

Knot Resolver

Knot Resolver is a minimalistic implementation of a caching validating DNS resolver.
Modular architecture keeps the core tiny and efficient,
and it provides a state-machine like API for extensions.

Users

	Quick Reference

	Daemon
	Configuration

	CLI interface

	Control sockets

	Utilizing multiple CPUs

	Cache Garbage Collector

	Using CLI tools

	Code reference

	Modules
	Static hints

	Statistics collector

	Query policies

	Views and ACLs

	Prefetching records

	HTTP/2 services

	DNS-over-HTTP (DoH)

	DNS Application Firewall

	Rebinding protection

	Graphite module

	Etcd module

	DNS64

	Renumber

	DNSSEC validation failure logging

	Name Server Identifier (NSID)

	Workarounds

	Dnstap

	Signaling Trust Anchor Knowledge in DNSSEC

	Sentinel for Detecting Trusted Root Keys

	Priming module

	System time skew detector

	Detect discontinuous jumps in the system time

	Root on loopback (RFC 7706)

	Cache prefilling

	Serve stale

	EDNS keepalive

	Experimental DNS-over-TLS Auto-discovery

	Refuse queries without RD bit

	Upgrading

	Release notes

Experts

	Building from sources
	Dependencies

	Compilation

	Tests

	HTML Documentation

	Tarball

	Packaging

	Docker image

Developers

	Knot Resolver library
	Requirements

	For users

	For developers

	Writing layers

	APIs in Lua

	API reference

	Modules API reference
	Supported languages

	The anatomy of an extension

	Writing a module in Lua

	Writing a module in C

	Configuring modules

	Exposing C module properties

Indices and tables

	Index

	Module Index

	Search Page

Quick Reference

	Installation [https://www.knot-resolver.cz/download/]

	TLS Forwarding

	Network configuration

	Module: policy

Daemon

The server is in the daemon directory, it works out of the box without any configuration.

$ kresd -v # run with defaults in verbose mode
$ kresd -h # Get help

If you’re using our packages, they also provide systemd integration. To start the resolver under systemd, you can use the kresd@1.service service. By default, the resolver only binds to local interfaces.

$ man kresd.systemd # Help for systemd integration configuration
$ systemctl start kresd@1.service

Configuration

	Configuration example

	Configuration syntax

	Dynamic configuration

	Asynchronous events

	Configuration reference

	Environment

	Network configuration

	TLS server configuration

	Trust anchors and DNSSEC

	Modules configuration

	Cache configuration

	Timers and events

	Asynchronous function execution

	Scripting worker

In its simplest form the server requires just a working directory in which it can set up persistent files like
cache and the process state. If you don’t provide the working directory by parameter, it is going to make itself
comfortable in the current working directory.

$ kresd /var/cache/knot-resolver

And you’re good to go for most use cases! If you want to use modules or configure daemon behavior, read on.

There are several choices on how you can configure the daemon, a RPC interface, a CLI, and a configuration file.
Fortunately all share common syntax and are transparent to each other.

Configuration example

-- interfaces
net = { '127.0.0.1', '::1' }
-- load some modules
modules = { 'policy' }
-- 10MB cache
cache.size = 10*MB

Tip

There are more configuration examples in etc/ directory for personal, ISP, company internal and resolver cluster use cases.

Configuration syntax

The configuration is kept in the config file in the daemon working directory, and it’s going to get loaded automatically.
If there isn’t one, the daemon is going to start with sane defaults, listening on localhost.
The syntax for options is like follows: group.option = value or group.action(parameters).
You can also comment using a -- prefix.

A simple example would be to load static hints.

modules = {
 'hints' -- no configuration
}

If the module accepts configuration, you can call the module.config({...}) or provide options table.
The syntax for table is { key1 = value, key2 = value }, and it represents the unpacked JSON-encoded [http://json.org/example] string, that
the modules use as the input configuration.

modules = {
 hints = '/etc/hosts'
}

Warning

Modules specified including their configuration may not load exactly in the same order as specified.

Modules are inherently ordered by their declaration. Some modules are built-in, so it would be normally impossible to place for example hints before cache. You can enforce specific order by precedence operators > and <.

modules = {
 'hints > iterate', -- Hints AFTER iterate
 'policy > hints', -- Policy AFTER hints
 'view < cache' -- View BEFORE cache
}
modules.list() -- Check module call order

This is useful if you’re writing a module with a layer, that evaluates an answer before writing it into cache for example.

Tip

The configuration and CLI syntax is Lua language, with which you may already be familiar with.
If not, you can read the Learn Lua in 15 minutes [http://tylerneylon.com/a/learn-lua/] for a syntax overview. Spending just a few minutes
will allow you to break from static configuration, write more efficient configuration with iteration, and
leverage events and hooks. Lua is heavily used for scripting in applications ranging from embedded to game engines,
but in DNS world notably in PowerDNS Recursor [https://doc.powerdns.com/md/recursor/scripting/]. Knot Resolver does not simply use Lua modules, but it is
the heart of the daemon for everything from configuration, internal events and user interaction.

Dynamic configuration

Knowing that the the configuration is a Lua in disguise enables you to write dynamic rules. It also helps you to avoid repetitive templating that is unavoidable with static configuration.

if hostname() == 'hidden' then
 net.listen(net.eth0, 5353)
else
 net = { '127.0.0.1', net.eth1.addr[1] }
end

Another example would show how it is possible to bind to all interfaces, using iteration.

for name, addr_list in pairs(net.interfaces()) do
 net.listen(addr_list)
end

Tip

Some users observed a considerable, close to 100%, performance gain in Docker containers when they bound the daemon to a single interface:ip address pair. One may expand the aforementioned example with browsing available addresses as:

addrpref = env.EXPECTED_ADDR_PREFIX
for k, v in pairs(addr_list["addr"]) do
 if string.sub(v,1,string.len(addrpref)) == addrpref then
 net.listen(v)
...

You can also use third-party packages (available for example through LuaRocks [https://luarocks.org/]) as on this example
to download cache from parent, to avoid cold-cache start.

local http = require('socket.http')
local ltn12 = require('ltn12')

local cache_size = 100*MB
local cache_path = '/var/cache/knot-resolver'
cache.open(cache_size, 'lmdb://' .. cache_path)
if cache.count() == 0 then
 cache.close()
 -- download cache from parent
 http.request {
 url = 'http://parent/data.mdb',
 sink = ltn12.sink.file(io.open(cache_path .. '/data.mdb', 'w'))
 }
 -- reopen cache with 100M limit
 cache.open(cache_size, 'lmdb://' .. cache_path)
end

Asynchronous events

Lua supports a concept called closures [https://www.lua.org/pil/6.1.html], this is extremely useful for scripting actions upon various events,
say for example - publish statistics each minute and so on.
Here’s an example of an anonymous function with event.recurrent().

Note that each scheduled event is identified by a number valid for the duration of the event,
you may use it to cancel the event at any time.

modules.load('stats')

-- log statistics every second
local stat_id = event.recurrent(1 * second, function(evid)
 log(table_print(stats.list()))
end)

-- stop printing statistics after first minute
event.after(1 * minute, function(evid)
 event.cancel(stat_id)
end)

If you need to persist state between events, encapsulate even handle in closure function which will provide persistent variable (called previous):

modules.load('stats')

-- make a closure, encapsulating counter
function speed_monitor()
 local previous = stats.list()
 -- monitoring function
 return function(evid)
 local now = stats.list()
 local total_increment = now['answer.total'] - previous['answer.total']
 local slow_increment = now['answer.slow'] - previous['answer.slow']
 if slow_increment / total_increment > 0.05 then
 log('WARNING! More than 5 %% of queries was slow!')
 end
 previous = now -- store current value in closure
 end
end

-- monitor every minute
local monitor_id = event.recurrent(1 * minute, speed_monitor())

Another type of actionable event is activity on a file descriptor. This allows you to embed other
event loops or monitor open files and then fire a callback when an activity is detected.
This allows you to build persistent services like HTTP servers or monitoring probes that cooperate
well with the daemon internal operations. See event.socket()

File watchers are possible with worker.coroutine() and cqueues [https://25thandclement.com/~william/projects/cqueues.html], see the cqueues documentation for more information.

local notify = require('cqueues.notify')
local watcher = notify.opendir('/etc')
watcher:add('hosts')

-- Watch changes to /etc/hosts
worker.coroutine(function ()
 for flags, name in watcher:changes() do
 for flag in notify.flags(flags) do
 print(name, notify[flag])
 end
 end
end)

Configuration reference

This is a reference for variables and functions available to both configuration file and CLI.

	Environment

	Network configuration

	TLS server configuration

	Trust anchors and DNSSEC

	Modules configuration

	Cache configuration

	Timers and events

	Asynchronous function execution

	Scripting worker

Environment

	
env (table)

	Return environment variable.

env.USER -- equivalent to $USER in shell

	
hostname([fqdn])

	
	Returns

	Machine hostname.

If called with a parameter, it will set kresd’s internal
hostname. If called without a parameter, it will return kresd’s
internal hostname, or the system’s POSIX hostname (see
gethostname(2)) if kresd’s internal hostname is unset.

This affects ephemeral certificates for kresd serving DNS over TLS.

	
verbose(true | false)

	
	Returns

	Toggle verbose logging.

	
mode('strict' | 'normal' | ‘permissive’)

	
	Returns

	Change resolver strictness checking level.

By default, resolver runs in normal mode. There are possibly many small adjustments
hidden behind the mode settings, but the main idea is that in permissive mode, the resolver
tries to resolve a name with as few lookups as possible, while in strict mode it spends much
more effort resolving and checking referral path. However, if majority of the traffic is covered
by DNSSEC, some of the strict checking actions are counter-productive.

	Glue type

	Modes when it is accepted

	Example glue 1

	mandatory glue

	strict, normal, permissive

	ns1.example.org

	in-bailiwick glue

	normal, permissive

	ns1.example2.org

	any glue records

	permissive

	ns1.example3.net

	1

	The examples show glue records acceptable from servers
authoritative for org zone when delegating to example.org zone.
Unacceptable or missing glue records trigger resolution of names listed
in NS records before following respective delegation.

	
reorder_RR([true | false])

	
	Parameters

	
	value (boolean) – New value for the option (optional)

	Returns

	The (new) value of the option

If set, resolver will vary the order of resource records within RR-sets.
It is disabled by default.

	
user(name, [group])

	
	Parameters

	
	name (string) – user name

	group (string) – group name (optional)

	Returns

	boolean

Drop privileges and run as given user (and group, if provided).

Tip

Note that you should bind to required network addresses before changing user. At the same time, you should open the cache AFTER you change the user (so it remains accessible). A good practice is to divide configuration in two parts:

-- privileged
net = { '127.0.0.1', '::1' }
-- unprivileged
cache.size = 100*MB
trust_anchors.add_file('root.key')

Example output:

> user('baduser')
invalid user name
> user('knot-resolver', 'netgrp')
true
> user('root')
Operation not permitted

	
resolve(name, type[, class = kres.class.IN, options = {}, finish = nil, init = nil])

	
	Parameters

	
	name (string) – Query name (e.g. ‘com.’)

	type (number) – Query type (e.g. kres.type.NS)

	class (number) – Query class (optional) (e.g. kres.class.IN)

	options (strings) – Resolution options (see kr_qflags)

	finish (function) – Callback to be executed when resolution completes (e.g. function cb (pkt, req) end). The callback gets a packet containing the final answer and doesn’t have to return anything.

	init (function) – Callback to be executed with the kr_request before resolution starts.

	Returns

	boolean

The function can also be executed with a table of arguments instead. This is useful if you’d like to skip some arguments, for example:

resolve {
 name = 'example.com',
 type = kres.type.AAAA,
 init = function (req)
 end,
}

Example:

-- Send query for root DNSKEY, ignore cache
resolve('.', kres.type.DNSKEY, kres.class.IN, 'NO_CACHE')

-- Query for AAAA record
resolve('example.com', kres.type.AAAA, kres.class.IN, 0,
function (pkt, req)
 -- Check answer RCODE
 if pkt:rcode() == kres.rcode.NOERROR then
 -- Print matching records
 local records = pkt:section(kres.section.ANSWER)
 for i = 1, #records do
 local rr = records[i]
 if rr.type == kres.type.AAAA then
 print ('record:', kres.rr2str(rr))
 end
 end
 else
 print ('rcode: ', pkt:rcode())
 end
end)

	
package_version()

	
	Returns

	Current package version.

This returns current package version (the version of the binary) as a string.

> package_version()
2.1.1

Network configuration

Modern Linux distributions use so-called Systemd socket activation, which
effectively means that IP addresses and ports to listen on are configured
in Systemd configuration files.

Older Linux systems and all non-Linux systems do not support this modern method
and have to resort to old fashioned way of configuring network interfaces using
net.listen() configuration call.
Most notable examples of such systems are CentOS 7 and macOS.

Warning

On machines with multiple IP addresses avoid listening on wildcards
0.0.0.0 or ::. Knot Resolver could answer from different IP
addresses if the network address ranges overlap,
and clients would probably refuse such a response.

Network configuration using systemd

If you’re using our packages with systemd with sockets support (not supported
on CentOS 7), network interfaces are configured using systemd drop-in files.

Each protocol has its own configuration file. By default, these are configured
to listen on localhost.

	Network protocol

	Socket file name

	DNS (UDP+TCP, RFC 1034 [https://tools.ietf.org/html/rfc1034.html])

	kresd.socket

	DNS-over-TLS (DoT)

	kresd-tls.socket

	DNS-over-HTTP (DoH)

	kresd-doh.socket

	Web management

	kresd-webmgmt.socket

Warning

You MUST NOT repeat the localhost defaults in the following
drop-in overrides, otherwise the socket will fail to start with “Address in
use” error. To view the entire socket configuration, including any drop-ins,
use systemctl cat.

To configure kresd to listen on a public interface using the original DNS protocol,
create a drop-in file:

$ systemctl edit kresd.socket

/etc/systemd/system/kresd.socket.d/override.conf
always listen on UDP (datagram) and TCP (stream) as well
[Socket]
ListenDatagram=192.0.2.115:53
ListenStream=192.0.2.115:53

Note

If you change network interfaces of systemd sockets for already running
kresd instance, make sure to call systemctl restart system-kresd.slice for
these changes to take effect.

Configuration you provide is automatically merged with defaults from your
distribution. It is also possible to check resulting configuration using
systemctl cat:

$ systemctl cat kresd.socket

merged result: user configuration + distro defaults
[Socket]
FileDescriptorName=dns
FreeBind=true
BindIPv6Only=both
ListenDatagram=[::1]:53
ListenStream=[::1]:53
ListenDatagram=127.0.0.1:53
ListenStream=127.0.0.1:53
ListenDatagram=192.0.2.115:53
ListenStream=192.0.2.115:53

The default localhost interface/port can also be removed/overriden by using an
empty ListenDatagram= or ListenStream= directive. This can be used when
you want to configure kresd to listen on all IPv4/IPv6 network interfaces (if
you’ve disabled IPv6 support in kernel, use 0.0.0.0:port instead``).

/etc/systemd/system/kresd.socket.d/override.conf
[Socket]
ListenDatagram=
ListenStream=
ListenDatagram=53
ListenStream=53

Note

Using IPv6 to bind to IPv4 interfaces is currently not compatible
with IPv4 syntax in view:addr() when using the view module. For
possible workarounds, see
https://gitlab.labs.nic.cz/knot/knot-resolver/issues/445

It can also be useful if you want to use the Knot DNS authoritative server
with the dnsproxy module [https://www.knot-dns.cz/docs/2.7/html/modules.html#dnsproxy-tiny-dns-proxy] to have both resolver and authoritative server
running on the same machine. This is not recommended configuration but it can
be done like this:

/etc/systemd/system/kresd.socket.d/override.conf
[Socket]
ListenDatagram=
ListenStream=
ListenDatagram=127.0.0.1:53000
ListenStream=127.0.0.1:53000
ListenDatagram=[::1]:53000
ListenStream=[::1]:53000

The kresd-tls.socket can also be configured in the same way to listen for
DNS-over-TLS connections (RFC 7858 [https://tools.ietf.org/html/rfc7858.html]).

$ systemctl edit kresd-tls.socket

/etc/systemd/system/kresd-tls.socket.d/override.conf
specify only TCP (stream), DTLS is not supported
[Socket]
ListenStream=192.0.2.115:853

When configuring sockets for DNS-over-HTTP (DoH), make sure you have
kresd-doh.socket installed, it might be part of a separate
knot-resolver-module-http package.

Warning

Make sure you read section DNS-over-HTTP (DoH) before exposing
the DoH protocol to outside.

For example, to remove the default localhost:44353 and listen on all interfaces
on port 443, create the following drop-in file for kresd-doh.socket:

$ systemctl edit kresd-doh.socket

/etc/systemd/system/kresd-doh.socket.d/override.conf
[Socket]
ListenStream=
ListenStream=443

Make sure no other service is using port 443, as that will result in
unpredictable behaviour. Alternately, you can use port 44353 where a collision
is unlikely.

Also, don’t forget to load http module in configuration
file, otherwise the socket won’t work.

Legacy network configuration using configuration file

If you don’t use systemd with sockets to run kresd, addresses and ports to listen
on are configured in the config file.

	
net.listen(addresses, [port = 53, { kind = 'dns' }])

	
	Returns

	boolean

Listen on addresses; port and flags are optional.
The addresses can be specified as a string or device.
The command can be given multiple times,
but repeating an address-port combination is an error.
Port 853 implies kind = 'tls' but it is always better to be explicit.

	Network protocol

	Configuration command

	DNS (UDP+TCP, RFC 1034 [https://tools.ietf.org/html/rfc1034.html])

	net.listen('192.0.2.123', 53)

	DNS-over-TLS (DoT)

	net.listen('192.0.2.123', 853, { kind = 'tls' })

	DNS-over-HTTP (DoH)

	net.listen('192.0.2.123', 443, { kind = 'doh' })

	Web management

	net.listen('192.0.2.123', 8453, { kind = 'webmgmt' })

Examples:

net.listen('::1')
net.listen(net.lo, 53)
net.listen(net.eth0, 853, { kind = 'tls' })
net.listen('::', 443, { kind = 'doh' }) -- see http module
net.listen('::', 8453, { kind = 'webmgmt' }) -- see http module
net.listen('/tmp/kresd-socket', nil, { kind = 'webmgmt' }) -- http module supports AF_UNIX

Warning

Make sure you read section DNS-over-HTTP (DoH) before exposing
the DNS-over-HTTP protocol to outside.

	
net.close(address, [port])

	
	Returns

	boolean (at least one endpoint closed)

Close all endpoints listening on the specified address, optionally restricted by port as well.

Additional network configuration options

Following commands are useful in special situations and can be usef with and without systemd socket activation:

	
net.ipv6 = true|false

	
	Return

	boolean (default: true)

Enable/disable using IPv6 for contacting upstream nameservers.

	
net.ipv4 = true|false

	
	Return

	boolean (default: true)

Enable/disable using IPv4 for contacting upstream nameservers.

	
net.list()

	
	Returns

	Table of bound interfaces.

Example output:

[1] => {
 [kind] => tls
 [transport] => {
 [family] => inet4
 [ip] => 127.0.0.1
 [port] => 853
 [protocol] => tcp
 }
}
[2] => {
 [kind] => dns
 [transport] => {
 [family] => inet6
 [ip] => ::1
 [port] => 53
 [protocol] => udp
 }
}
[3] => {
 [kind] => dns
 [transport] => {
 [family] => inet6
 [ip] => ::1
 [port] => 53
 [protocol] => tcp
 }
}

	
net.interfaces()

	
	Returns

	Table of available interfaces and their addresses.

Example output:

[lo0] => {
 [addr] => {
 [1] => ::1
 [2] => 127.0.0.1
 }
 [mac] => 00:00:00:00:00:00
}
[eth0] => {
 [addr] => {
 [1] => 192.168.0.1
 }
 [mac] => de:ad:be:ef:aa:bb
}

Tip

You can use net.<iface> as a shortcut for specific interface, e.g. net.eth0

	
net.bufsize([udp_bufsize])

	Get/set maximum EDNS payload size advertised in DNS packets. Default is 4096 bytes and the default will be lowered to value around 1220 bytes in future, once DNS Flag Day 2020 [https://dnsflagday.net/] becomes effective.

Minimal value allowed by standard RFC 6891 [https://tools.ietf.org/html/rfc6891.html] is 512 bytes, which is equal to DNS packet size without Extension Mechanisms for DNS. Value 1220 bytes is minimum size required in DNSSEC standard RFC 4035 [https://tools.ietf.org/html/rfc4035.html].

Example output:

> net.bufsize(4096)
nil
> net.bufsize()
4096

	
net.tcp_pipeline([len])

	Get/set per-client TCP pipeline limit, i.e. the number of outstanding queries that a single client connection can make in parallel. Default is 100.

> net.tcp_pipeline()
100
> net.tcp_pipeline(50)
50

Warning

Please note that too large limit may have negative impact on performance and can lead to increased number of SERVFAIL answers.

	
net.outgoing_v4([string address])

	Get/set the IPv4 address used to perform queries. There is also net.outgoing_v6 for IPv6.
The default is nil, which lets the OS choose any address.

TLS server configuration

DNS-over-TLS server (RFC 7858 [https://tools.ietf.org/html/rfc7858.html]) is enabled by default on loopback interface port 853.
Information how to configure listening on specific IP addresses is in previous sections
Network configuration.

By default a self-signed certificate is generated. For serious deployments
it is strongly recommended to configure your own TLS certificates signed
by a trusted CA. This is done using function net.tls().

	
net.tls([cert_path], [key_path])

	Get/set path to a server TLS certificate and private key for DNS/TLS.

Example output:

> net.tls("/etc/knot-resolver/server-cert.pem", "/etc/knot-resolver/server-key.pem")
> net.tls() -- print configured paths
("/etc/knot-resolver/server-cert.pem", "/etc/knot-resolver/server-key.pem")

	
net.tls_padding([true | false])

	Get/set EDNS(0) padding of answers to queries that arrive over TLS
transport. If set to true (the default), it will use a sensible
default padding scheme, as implemented by libknot if available at
compile time. If set to a numeric value >= 2 it will pad the
answers to nearest padding boundary, e.g. if set to 64, the
answer will have size of a multiple of 64 (64, 128, 192, …). If
set to false (or a number < 2), it will disable padding entirely.

	
net.tls_sticket_secret([string with pre-shared secret])

	Set secret for TLS session resumption via tickets, by RFC 5077 [https://tools.ietf.org/html/rfc5077.html].

The server-side key is rotated roughly once per hour.
By default or if called without secret, the key is random.
That is good for long-term forward secrecy, but multiple kresd instances
won’t be able to resume each other’s sessions.

If you provide the same secret to multiple instances, they will be able to resume
each other’s sessions without any further communication between them.
This synchronization works only among instances having the same endianess
and time_t structure and size (sizeof(time_t)).

For good security the secret must have enough entropy to be hard to guess,
and it should still be occasionally rotated manually and securely forgotten,
to reduce the scope of privacy leak in case the
secret leaks eventually [https://en.wikipedia.org/wiki/Forward_secrecy].

Warning

Setting the secret is probably too risky with TLS <= 1.2.
GnuTLS stable release supports TLS 1.3 since 3.6.3 (summer 2018).
Therefore setting the secrets should be considered experimental for now
and might not be available on your system.

	
net.tls_sticket_secret_file([string with path to a file containing pre-shared secret])

	The same as net.tls_sticket_secret(),
except the secret is read from a (binary) file.

Trust anchors and DNSSEC

Since version 4.0, DNSSEC validation is enabled by default.
This is secure default and should not be changed unless absolutely necessary.

Options in this section are intended only for expert users and normally
should not be needed.

If you really need to turn DNSSEC off and are okay with lowering security of your
system by doing so, add the following snippet to your configuration file.

-- turns off DNSSEC validation
trust_anchors.remove('.')

The resolver supports DNSSEC including RFC 5011 [https://tools.ietf.org/html/rfc5011.html] automated DNSSEC TA updates
and RFC 7646 [https://tools.ietf.org/html/rfc7646.html] negative trust anchors. Depending on your distribution, DNSSEC
trust anchors should be either maintained in accordance with the distro-wide
policy, or automatically maintained by the resolver itself.

In practice this means that you can forget about it and your favorite Linux
distribution will take care of it for you.

	
trust_anchors.add_file(keyfile[, readonly = false])

	
	Parameters

	
	keyfile (string) – path to the file.

	readonly – if true, do not attempt to update the file.

The format is standard zone file, though additional information may be persisted in comments.
Either DS or DNSKEY records can be used for TAs.
If the file does not exist, bootstrapping of root TA will be attempted.

Each file can only contain records for a single domain.
The TAs will be updated according to RFC 5011 [https://tools.ietf.org/html/rfc5011.html] and persisted in the file (if allowed).

Example output:

> trust_anchors.add_file('root.key')
[ta] new state of trust anchors for a domain:
. 165488 DS 19036 8 2 49AAC11D7B6F6446702E54A1607371607A1A41855200FD2CE1CDDE32F24E8FB5
nil

[ta] key: 19036 state: Valid

	
trust_anchors.remove(zonename)

	Remove specified trust anchor from trusted key set. Removing trust anchor for the root zone effectivelly disables DNSSEC validation (unless you configured another trust anchor).

> trust_anchors.remove('.')
true

If you want to disable DNSSEC validation for a particular domain but keep it enabled for the rest of DNS tree, use trust_anchors.set_insecure().

	
trust_anchors.hold_down_time = 30 * day

	
	Return

	int (default: 30 * day)

Modify RFC5011 hold-down timer to given value. Intended only for testing purposes. Example: 30 * sec

	
trust_anchors.refresh_time = nil

	
	Return

	int (default: nil)

Modify RFC5011 refresh timer to given value (not set by default), this will force trust anchors
to be updated every N seconds periodically instead of relying on RFC5011 logic and TTLs.
Intended only for testing purposes.
Example: 10 * sec

	
trust_anchors.keep_removed = 0

	
	Return

	int (default: 0)

How many Removed keys should be held in history (and key file) before being purged.
Note: all Removed keys will be purged from key file after restarting the process.

	
trust_anchors.set_insecure(nta_set)

	
	Parameters

	
	nta_list (table) – List of domain names (text format) representing NTAs.

When you use a domain name as an negative trust anchor (NTA), DNSSEC validation will be turned off at/below these names.
Each function call replaces the previous NTA set. You can find the current active set in trust_anchors.insecure variable.
If you want to disable DNSSEC validation completely use trust_anchors.remove() function instead.

Example output:

> trust_anchors.set_insecure({ 'bad.boy', 'example.com' })
> trust_anchors.insecure
[1] => bad.boy
[2] => example.com

Warning

If you set NTA on a name that is not a zone cut,
it may not always affect names not separated from the NTA by a zone cut.

	
trust_anchors.add(rr_string)

	
	Parameters

	
	rr_string (string) – DS/DNSKEY records in presentation format (e.g. . 3600 IN DS 19036 8 2 49AAC11...)

Inserts DS/DNSKEY record(s) into current keyset. These will not be managed or updated, use it only for testing
or if you have a specific use case for not using a keyfile.

Note

Static keys are very error-prone and should not be used in production. Use trust_anchors.add_file() instead.

Example output:

> trust_anchors.add('. 3600 IN DS 19036 8 2 49AAC11...')

	
trust_anchors.summary()

	Return string with summary of configured DNSSEC trust anchors, including negative TAs.

Modules configuration

The daemon provides an interface for dynamic loading of daemon modules.

Tip

Use declarative interface for module loading.

modules = {
 hints = {file = '/etc/hosts'}
}

Equals to:

modules.load('hints')
hints.config({file = '/etc/hosts'})

	
modules.list()

	
	Returns

	List of loaded modules.

	
modules.load(name)

	
	Parameters

	
	name (string) – Module name, e.g. “hints”

	Returns

	boolean

Load a module by name.

	
modules.unload(name)

	
	Parameters

	
	name (string) – Module name

	Returns

	boolean

Unload a module by name.

Cache configuration

The default cache in Knot Resolver is persistent with LMDB backend, this means that the daemon doesn’t lose
the cached data on restart or crash to avoid cold-starts. The cache may be reused between cache
daemons or manipulated from other processes, making for example synchronized load-balanced recursors possible.

	
cache.open(max_size[, config_uri])

	
	Parameters

	
	max_size (number) – Maximum cache size in bytes.

	Returns

	true if cache was opened

Open cache with a size limit. The cache will be reopened if already open.
Note that the max_size cannot be lowered, only increased due to how cache is implemented.

Tip

Use kB, MB, GB constants as a multiplier, e.g. 100*MB.

As of now, the built-in backend with URI lmdb:// allows you to change the cache directory.

Example:

cache.open(100 * MB, 'lmdb:///var/cache/knot-resolver')

	
cache.size

	Set the cache maximum size in bytes. Note that this is only a hint to the backend,
which may or may not respect it. See cache.open().

cache.size = 100 * MB -- equivalent to `cache.open(100 * MB)`

	
cache.current_size

	Get the maximum size in bytes.

print(cache.current_size)

	
cache.storage

	Set the cache storage backend configuration, see cache.backends() for
more information. If the new storage configuration is invalid, it is not set.

cache.storage = 'lmdb://.'

	
cache.current_storage

	Get the storage backend configuration.

print(cache.current_storage)

	
cache.backends()

	
	Returns

	map of backends

The cache supports runtime-changeable backends, using the optional RFC 3986 [https://tools.ietf.org/html/rfc3986.html] URI, where the scheme
represents backend protocol and the rest of the URI backend-specific configuration. By default, it
is a lmdb backend in working directory, i.e. lmdb://.

Example output:

[lmdb://] => true

	
cache.count()

	
	Returns

	Number of entries in the cache. Meaning of the number is an implementation detail and is subject of change.

	
cache.close()

	
	Returns

	true if cache was closed

Close the cache.

Note

This may or may not clear the cache, depending on the cache backend.

	
cache.stats()

	Return table with low-level statistics for each internal cache operation.
This counts each access to cache and does not directly map to individual
DNS queries or resource records.
For query-level statistics see stats module.

Example:

> cache.stats()
[read_leq_miss] => 4
[write] => 189
[read_leq] => 9
[read] => 4313
[read_miss] => 1143
[open] => 0
[close] => 0
[remove_miss] => 0
[commit] => 117
[match_miss] => 2
[match] => 21
[count] => 2
[clear] => 0
[remove] => 17

Cache operation read_leq (read less or equal, i.e. range search) was requested 9 times,
and 4 out of 9 operations were finished with cache miss.

	
cache.max_ttl([ttl])

	
	Parameters

	
	ttl (number) – maximum cache TTL in seconds (default: 6 days)

	Returns

	current maximum TTL

Get or set maximum cache TTL.

Note

The ttl value must be in range (min_ttl, 4294967295).

Warning

This settings applies only to currently open cache, it will not persist if the cache is closed or reopened.

-- Get maximum TTL
cache.max_ttl()
518400
-- Set maximum TTL
cache.max_ttl(172800)
172800

	
cache.min_ttl([ttl])

	
	Parameters

	
	ttl (number) – minimum cache TTL in seconds (default: 5 seconds)

	Returns

	current maximum TTL

Get or set minimum cache TTL. Any entry inserted into cache with TTL lower than minimal will be overridden to minimum TTL. Forcing TTL higher than specified violates DNS standards, use with care.

Note

The ttl value must be in range <0, max_ttl).

Warning

This settings applies only to currently open cache, it will not persist if the cache is closed or reopened.

-- Get minimum TTL
cache.min_ttl()
0
-- Set minimum TTL
cache.min_ttl(5)
5

	
cache.ns_tout([timeout])

	
	Parameters

	
	timeout (number) – NS retry interval in milliseconds (default: KR_NS_TIMEOUT_RETRY_INTERVAL)

	Returns

	current timeout

Get or set time interval for which a nameserver address will be ignored after determining that it doesn’t return (useful) answers.
The intention is to avoid waiting if there’s little hope; instead, kresd can immediately SERVFAIL or immediately use stale records (with serve_stale module).

Warning

This settings applies only to the current kresd process.

	
cache.get([domain])

	This function is not implemented at this moment.
We plan to re-introduce it soon, probably with a slightly different API.

	
cache.clear([name], [exact_name], [rr_type], [chunk_size], [callback], [prev_state])

	
Purge cache records matching specified criteria. There are two specifics:

	To reliably remove negative cache entries you need to clear subtree with the whole zone. E.g. to clear negative cache entries for (formerly non-existing) record www.example.com. A you need to flush whole subtree starting at zone apex, e.g. example.com. 2.

	This operation is asynchronous and might not be yet finished when call to cache.clear() function returns. Return value indicates if clearing continues asynchronously or not.

	Parameters

	
	name (string) – subtree to purge; if the name isn’t provided, whole cache is purged
(and any other parameters are disregarded).

	exact_name (bool) – if set to true, only records with the same name are removed;
default: false.

	rr_type (kres.type) – you may additionally specify the type to remove,
but that is only supported with exact_name == true; default: nil.

	chunk_size (integer) – the number of records to remove in one round; default: 100.
The purpose is not to block the resolver for long.
The default callback repeats the command after one millisecond
until all matching data are cleared.

	callback (function) – a custom code to handle result of the underlying C call.
Its parameters are copies of those passed to cache.clear() with one additional
parameter rettable containing table with return value from current call.
count field contains a return code from kr_cache_remove_subtree().

	prev_state (table) – return value from previous run (can be used by callback)

	Return type

	table

	Returns

	count key is always present. Other keys are optional and their presence indicate special conditions.

	count (integer) - number of items removed from cache by this call (can be 0 if no entry matched criteria)

	not_apex - cleared subtree is not cached as zone apex; proofs of non-existence were probably not removed

	subtree (string) - hint where zone apex lies (this is estimation from cache content and might not be accurate)

	chunk_limit - more than chunk_size items needs to be cleared, clearing will continue asynchronously

Examples:

-- Clear whole cache
> cache.clear()
[count] => 76

-- Clear records at and below 'com.'
> cache.clear('com.')
[chunk_limit] => chunk size limit reached; the default callback will continue asynchronously
[not_apex] => to clear proofs of non-existence call cache.clear('com.')
[count] => 100
[round] => 1
[subtree] => com.
> worker.sleep(0.1)
[cache] asynchonous cache.clear('com', false) finished

-- Clear only 'www.example.com.'
> cache.clear('www.example.com.', true)
[round] => 1
[count] => 1
[not_apex] => to clear proofs of non-existence call cache.clear('example.com.')
[subtree] => example.com.

	2

	This is a consequence of DNSSEC negative cache which relies on proofs of non-existence on various owner nodes. It is impossible to efficiently flush part of DNS zones signed with NSEC3.

Timers and events

The timer represents exactly the thing described in the examples - it allows you to execute closures
after specified time, or event recurrent events. Time is always described in milliseconds,
but there are convenient variables that you can use - sec, minute, hour.
For example, 5 * hour represents five hours, or 5*60*60*100 milliseconds.

	
event.after(time, function)

	
	Returns

	event id

Execute function after the specified time has passed.
The first parameter of the callback is the event itself.

Example:

event.after(1 * minute, function() print('Hi!') end)

	
event.recurrent(interval, function)

	
	Returns

	event id

Similar to event.after(), periodically execute function after interval passes.

Example:

msg_count = 0
event.recurrent(5 * sec, function(e)
 msg_count = msg_count + 1
 print('Hi #'..msg_count)
end)

	
event.reschedule(event_id, timeout)

	Reschedule a running event, it has no effect on canceled events.
New events may reuse the event_id, so the behaviour is undefined if the function
is called after another event is started.

Example:

local interval = 1 * minute
event.after(1 * minute, function (ev)
 print('Good morning!')
 -- Halven the interval for each iteration
 interval = interval / 2
 event.reschedule(ev, interval)
end)

	
event.cancel(event_id)

	Cancel running event, it has no effect on already canceled events.
New events may reuse the event_id, so the behaviour is undefined if the function
is called after another event is started.

Example:

e = event.after(1 * minute, function() print('Hi!') end)
event.cancel(e)

Watch for file descriptor activity. This allows embedding other event loops or simply
firing events when a pipe endpoint becomes active. In another words, asynchronous
notifications for daemon.

	
event.socket(fd, cb)

	
	Parameters

	
	fd (number) – file descriptor to watch

	cb – closure or callback to execute when fd becomes active

	Returns

	event id

Execute function when there is activity on the file descriptor and calls a closure
with event id as the first parameter, status as second and number of events as third.

Example:

e = event.socket(0, function(e, status, nevents)
 print('activity detected')
end)
e.cancel(e)

Asynchronous function execution

The event package provides a very basic mean for non-blocking execution - it allows running code when activity on a file descriptor is detected, and when a certain amount of time passes. It doesn’t however provide an easy to use abstraction for non-blocking I/O. This is instead exposed through the worker package (if cqueues Lua package is installed in the system).

	
worker.coroutine(function)

	Start a new coroutine with given function (closure). The function can do I/O or run timers without blocking the main thread. See cqueues [https://25thandclement.com/~william/projects/cqueues.html] for documentation of possible operations and synchronization primitives. The main limitation is that you can’t wait for a finish of a coroutine from processing layers, because it’s not currently possible to suspend and resume execution of processing layers.

Example:

worker.coroutine(function ()
 for i = 0, 10 do
 print('executing', i)
 worker.sleep(1)
 end
end)

	
worker.sleep(seconds)

	Pause execution of current function (asynchronously if running inside a worker coroutine).

When daemon is running in forked mode, each process acts independently. This is good because it reduces software complexity and allows for runtime scaling, but not ideal because of additional operational burden.
For example, when you want to add a new policy, you’d need to add it to either put it in the configuration, or execute command on each process independently. The daemon simplifies this by promoting process group leader which is able to execute commands synchronously over forks.

Example:

worker.sleep(1)

	
map(expr)

	Run expression synchronously over all forks, results are returned as a table ordered as forks. Expression can be any valid expression in Lua.

Example:

-- Current instance only
hostname()
localhost
-- Mapped to forks
map 'hostname()'
[1] => localhost
[2] => localhost
-- Get worker ID from each fork
map 'worker.id'
[1] => 0
[2] => 1
-- Get cache stats from each fork
map 'cache.stats()'
[1] => {
 [hit] => 0
 [delete] => 0
 [miss] => 0
 [insert] => 0
}
[2] => {
 [hit] => 0
 [delete] => 0
 [miss] => 0
 [insert] => 0
}

Scripting worker

Worker is a service over event loop that tracks and schedules outstanding queries,
you can see the statistics or schedule new queries. It also contains information about
specified worker count and process rank.

	
worker.count

	Return current total worker count (e.g. 1 for single-process)

	
worker.id

	Return current worker ID (starting from 0 up to worker.count - 1)

	
worker.pid

	Current worker process PID (number).

	
worker.stats()

	Return table of statistics. See member descriptions in worker_stats.
A few fields are added, mainly from POSIX getrusage():

	usertime and systime – CPU time used, in seconds

	pagefaults – the number of hard page faults, i.e. those that required I/O activity

	swaps – the number of times the process was “swapped” out of main memory; unused on Linux

	csw – the number of context switches, both voluntary and involuntary

	rss – current memory usage in bytes, including whole cache (resident set size)

Example:

print(worker.stats().concurrent)

CLI interface

The daemon features a CLI interface, type help() to see the list of available commands.

$ kresd /var/cache/knot-resolver
[system] started in interactive mode, type 'help()'
> cache.count()
53

Verbose output

If the verbose logging is compiled in, i.e. not turned off by
verbose_log=disabled, you can turn on verbose tracing of server operation
with the -v option. You can also toggle it on runtime with
verbose(true|false) command.

$ kresd -v

To run the daemon by hand, such as under nohup, use -f 1 to start a single fork. For example:

$ nohup ./daemon/kresd -a 127.0.0.1 -f 1 -v &

Control sockets

Unless ran manually, knot-resolver is typically started in non-interactive mode.
The mode gets triggered by using the -f command-line parameter or by passing sockets from systemd.
You can attach to the the consoles for each process; by default they are in rundir/tty/$PID.

Note

When running kresd with systemd, you can find the location of the socket(s) using systemctl status kresd-control@*.socket. Typically, these are in /run/knot-resolver/control@*.

$ nc -U rundir/tty/3008 # or socat - UNIX-CONNECT:rundir/tty/3008
> cache.count()
53

The direct output of the CLI command is captured and sent over the socket, while also printed to the daemon standard outputs (for accountability). This gives you an immediate response on the outcome of your command.
Error or debug logs aren’t captured, but you can find them in the daemon standard outputs.

This is also a way to enumerate and test running instances, the list of files in tty corresponds to the list
of running processes, and you can test the process for liveliness by connecting to the UNIX socket.

Utilizing multiple CPUs

The server can run in multiple independent processes, all sharing the same socket and cache. These processes can be started or stopped during runtime based on the load.

Using systemd

To run multiple daemons using systemd, use a different numeric identifier for
the instance, for example:

$ systemctl start kresd@1.service
$ systemctl start kresd@2.service
$ systemctl start kresd@3.service
$ systemctl start kresd@4.service

With the use of brace expansion, the equivalent command looks like:

$ systemctl start kresd@{1..4}.service

For more details, see kresd.systemd(7).

Daemon only

$ kresd -f 4 rundir > kresd.log &
$ kresd -f 2 rundir > kresd_2.log & # Extra instances
$ pstree $$ -g
bash(3533)─┬─kresd(19212)─┬─kresd(19212)
 │ ├─kresd(19212)
 │ └─kresd(19212)
 ├─kresd(19399)───kresd(19399)
 └─pstree(19411)
$ kill 19399 # Kill group 2, former will continue to run
bash(3533)─┬─kresd(19212)─┬─kresd(19212)
 │ ├─kresd(19212)
 │ └─kresd(19212)
 └─pstree(19460)

Note

On recent Linux supporting SO_REUSEPORT (since 3.9, backported to RHEL 2.6.32) it is also able to bind to the same endpoint and distribute the load between the forked processes. If your OS doesn’t support it, use only one daemon process.

Cache Garbage Collector

kresd daemon uses the available cache until it’s full. When more space is
required, the entire cache is dropped. To avoid starting over with an empty
cache, a separate garbage collector daemon is available to periodically trim
the cache instead.

The cache garbage collector daemon (kres-cache-gc) monitors the cache usage
and attempts to free up space when a threshold is reached. A garbage collector
systemd service, kres-cache-gc.service is turned on in our upstream packages.

To spawn the daemon manually and configure it to run every second, use:

$ kres-cache-gc -c /var/cache/knot-resolver -d 1000

Using CLI tools

	kresd-host.lua - a drop-in replacement for host(1) utility

Queries the DNS for information.
The hostname is looked up for IP4, IP6 and mail.

Example:

$ kresd-host.lua -f root.key -v nic.cz
nic.cz. has address 217.31.205.50 (secure)
nic.cz. has IPv6 address 2001:1488:0:3::2 (secure)
nic.cz. mail is handled by 10 mail.nic.cz. (secure)
nic.cz. mail is handled by 20 mx.nic.cz. (secure)
nic.cz. mail is handled by 30 bh.nic.cz. (secure)

	kresd-query.lua - run the daemon in zero-configuration mode, perform a query and execute given callback.

This is useful for executing one-shot queries and hooking into the processing of the result,
for example to check if a domain is managed by a certain registrar or if it’s signed.

Example:

$ kresd-query.lua www.sub.nic.cz 'assert(kres.dname2str(req:resolved().zone_cut.name) == "nic.cz.")' && echo "yes"
yes
$ kresd-query.lua -C 'trust_anchors.add_file("root.keys")' nic.cz 'assert(req:resolved().flags.DNSSEC_WANT)'
$ echo $?
0

Code reference

Functions

	
int worker_init(struct engine * engine, int worker_id, int worker_count)

	Create and initialize the worker.

	Return

	error code (ENOMEM)

	
void worker_deinit(void)

	Destroy the worker (free memory).

	
int worker_submit(struct session * session, knot_pkt_t * query)

	Process an incoming packet (query from a client or answer from upstream).

	Return

	0 or an error code

	Parameters

	
	session: session the where packet came from

	query: the packet, or NULL on an error from the transport layer

	
int worker_end_tcp(struct session * session)

	End current DNS/TCP session, this disassociates pending tasks from this session which may be freely closed afterwards.

	
KR_EXPORT knot_pkt_t* worker_resolve_mk_pkt(const char * qname_str, uint16_t qtype, uint16_t qclass, const struct kr_qflags * options)

	Create a packet suitable for worker_resolve_start().

All in malloc() memory.

	
KR_EXPORT struct qr_task* worker_resolve_start(knot_pkt_t * query, struct kr_qflags options)

	Start query resolution with given query.

	Return

	task or NULL

	
KR_EXPORT int worker_resolve_exec(struct qr_task * task, knot_pkt_t * query)

	

	
struct kr_request* worker_task_request(struct qr_task * task)

	
	Return

	struct kr_request associated with opaque task

	
int worker_task_step(struct qr_task * task, const struct sockaddr * packet_source, knot_pkt_t * packet)

	

	
int worker_task_numrefs(const struct qr_task * task)

	

	
int worker_task_finalize(struct qr_task * task, int state)

	Finalize given task.

	
void worker_task_complete(struct qr_task * task)

	

	
void worker_task_ref(struct qr_task * task)

	

	
void worker_task_unref(struct qr_task * task)

	

	
void worker_task_timeout_inc(struct qr_task * task)

	

	
int worker_add_tcp_connected(struct worker_ctx * worker, const struct sockaddr * addr, struct session * session)

	

	
int worker_del_tcp_connected(struct worker_ctx * worker, const struct sockaddr * addr)

	

	
int worker_del_tcp_waiting(struct worker_ctx * worker, const struct sockaddr * addr)

	

	
knot_pkt_t* worker_task_get_pktbuf(const struct qr_task * task)

	

	
struct request_ctx* worker_task_get_request(struct qr_task * task)

	

	
struct session* worker_request_get_source_session(struct request_ctx *)

	

	
void worker_request_set_source_session(struct request_ctx *, struct session * session)

	

	
uint16_t worker_task_pkt_get_msgid(struct qr_task * task)

	

	
void worker_task_pkt_set_msgid(struct qr_task * task, uint16_t msgid)

	

	
uint64_t worker_task_creation_time(struct qr_task * task)

	

	
void worker_task_subreq_finalize(struct qr_task * task)

	

	
bool worker_task_finished(struct qr_task * task)

	

	
int qr_task_on_send(struct qr_task * task, uv_handle_t * handle, int status)

	To be called after sending a DNS message.

It mainly deals with cleanups.

Variables

	
KR_EXPORT struct worker_ctx* the_worker

	Pointer to the singleton worker.

NULL if not initialized.

	
struct worker_stats

	#include <worker.h>Various worker statistics.

Sync with wrk_stats()

Public Members

	
size_t queries

	Total number of requests (from clients and internal ones).

	
size_t concurrent

	The number of requests currently in processing.

	
size_t rconcurrent

	

	
size_t dropped

	The number of requests dropped due to being badly formed.

See #471.

	
size_t timeout

	Number of outbound queries that timed out.

	
size_t udp

	Number of outbound queries over UDP.

	
size_t tcp

	Number of outbound queries over TCP (excluding TLS).

	
size_t tls

	Number of outbound queries over TLS.

	
size_t ipv4

	Number of outbound queries over IPv4.

	
size_t ipv6

	Number of outbound queries over IPv6.

Modules

	Static hints

	Statistics collector

	Query policies

	Views and ACLs

	Prefetching records

	HTTP/2 services

	DNS-over-HTTP (DoH)

	DNS Application Firewall

	Rebinding protection

	Graphite module

	Etcd module

	DNS64

	Renumber

	DNSSEC validation failure logging

	Name Server Identifier (NSID)

	Workarounds

	Dnstap

	Signaling Trust Anchor Knowledge in DNSSEC

	Sentinel for Detecting Trusted Root Keys

	Priming module

	System time skew detector

	Detect discontinuous jumps in the system time

	Root on loopback (RFC 7706)

	Cache prefilling

	Serve stale

	EDNS keepalive

	Experimental DNS-over-TLS Auto-discovery

	Refuse queries without RD bit

Static hints

This is a module providing static hints for forward records (A/AAAA) and reverse records (PTR).
The records can be loaded from /etc/hosts-like files and/or added directly.

You can also use the module to change the root hints; they are used as a safety belt or if the root NS
drops out of cache.

Examples

-- Load hints after iterator (so hints take precedence before caches)
modules = { 'hints > iterate' }
-- Add a custom hosts file
hints.add_hosts('hosts.custom')
-- Override the root hints
hints.root({
 ['j.root-servers.net.'] = { '2001:503:c27::2:30', '192.58.128.30' }
})
-- Add a custom hint
hints['foo.bar'] = '127.0.0.1'

Note

The policy module applies before hints, meaning e.g. that hints for special names (RFC 6761#section-6 [https://tools.ietf.org/html/rfc6761.html#section-6]) like localhost or test will get shadowed by policy rules by default.
That can be worked around e.g. by explicit policy.PASS action.

Properties

	
hints.config([path])

	
	Parameters

	
	path (string) – path to hosts-like file, default: no file

	Returns

	{ result: bool }

Clear any configured hints, and optionally load a hosts-like file as in hints.add_hosts(path).
(Root hints are not touched.)

	
hints.add_hosts([path])

	
	Parameters

	
	path (string) – path to hosts-like file, default: /etc/hosts

Add hints from a host-like file.

	
hints.get(hostname)

	
	Parameters

	
	hostname (string) – i.e. "localhost"

	Returns

	{ result: [address1, address2, ...] }

Return list of address record matching given name.
If no hostname is specified, all hints are returned in the table format used by hints.root().

	
hints.set(pair)

	
	Parameters

	
	pair (string) – hostname address i.e. "localhost 127.0.0.1"

	Returns

	{ result: bool }

Add a hostname–address pair hint.

Note

If multiple addresses have been added for a name (in separate hints.set() commands),
all are returned in a forward query.
If multiple names have been added to an address, the last one defined is returned
in a corresponding PTR query.

	
hints.del(pair)

	
	Parameters

	
	pair (string) – hostname address i.e. "localhost 127.0.0.1", or just hostname

	Returns

	{ result: bool }

Remove a hostname - address pair hint. If address is omitted, all addresses for the given name are deleted.

	
hints.root_file(path)

	Replace current root hints from a zonefile. If the path is omitted, the compiled-in path is used, i.e. the root hints are reset to the default.

	
hints.root(root_hints)

	
	Parameters

	
	root_hints (table) – new set of root hints i.e. {['name'] = 'addr', ...}

	Returns

	{ ['a.root-servers.net.'] = { '1.2.3.4', '5.6.7.8', ...}, ... }

Replace current root hints and return the current table of root hints.

Tip

If no parameters are passed, it only returns current root hints set without changing anything.

Example:

> hints.root({
 ['l.root-servers.net.'] = '199.7.83.42',
 ['m.root-servers.net.'] = '202.12.27.33'
})
[l.root-servers.net.] => {
 [1] => 199.7.83.42
}
[m.root-servers.net.] => {
 [1] => 202.12.27.33
}

Tip

A good rule of thumb is to select only a few fastest root hints. The server learns RTT and NS quality over time, and thus tries all servers available. You can help it by preselecting the candidates.

	
hints.use_nodata(toggle)

	
	Parameters

	
	toggle (bool) – true if enabling NODATA synthesis, false if disabling

	Returns

	{ result: bool }

If set to true (the default), NODATA will be synthesised for matching hint name, but mismatching type (e.g. AAAA query when only A hint exists).

	
hints.ttl([new_ttl])

	
	Parameters

	
	new_ttl (int) – new TTL to set (optional)

	Returns

	the TTL setting

This function allows to read and write the TTL value used for records generated by the hints module.

Statistics collector

This modules gathers various counters from the query resolution and server internals,
and offers them as a key-value storage. Any module may update the metrics or simply hook
in new ones.

-- Enumerate metrics
> stats.list()
[answer.cached] => 486178
[iterator.tcp] => 490
[answer.noerror] => 507367
[answer.total] => 618631
[iterator.udp] => 102408
[query.concurrent] => 149

-- Query metrics by prefix
> stats.list('iter')
[iterator.udp] => 105104
[iterator.tcp] => 490

-- Set custom metrics from modules
> stats['filter.match'] = 5
> stats['filter.match']
5

-- Fetch most common queries
> stats.frequent()
[1] => {
 [type] => 2
 [count] => 4
 [name] => cz.
}

-- Fetch most common queries (sorted by frequency)
> table.sort(stats.frequent(), function (a, b) return a.count > b.count end)

-- Show recently contacted authoritative servers
> stats.upstreams()
[2a01:618:404::1] => {
 [1] => 26 -- RTT
}
[128.241.220.33] => {
 [1] => 31 - RTT
}

Properties

	
stats.get(key)

	
	Parameters

	
	key (string) – i.e. "answer.total"

	Returns

	number

Return nominal value of given metric.

	
stats.set(key, val)

	
	Parameters

	
	key (string) – i.e. "answer.total"

	val (number) – i.e. 5

Set nominal value of given metric.

	
stats.list([prefix])

	
	Parameters

	
	prefix (string) – optional metric prefix, i.e. "answer" shows only metrics beginning with “answer”

Outputs collected metrics as a JSON dictionary.

	
stats.upstreams()

	

Outputs a list of recent upstreams and their RTT. It is sorted by time and stored in a ring buffer of
a fixed size. This means it’s not aggregated and readable by multiple consumers, but also that
you may lose entries if you don’t read quickly enough. The default ring size is 512 entries, and may be overriden on compile time by -DUPSTREAMS_COUNT=X.

	
stats.frequent()

	

Outputs list of most frequent iterative queries as a JSON array. The queries are sampled probabilistically,
and include subrequests. The list maximum size is 5000 entries, make diffs if you want to track it over time.

	
stats.clear_frequent()

	

Clear the list of most frequent iterative queries.

Built-in statistics

Built-in counters keep track of number of queries and answers matching specific criteria.

	Global request counters

	request.total

	total number of DNS requests from clients
(including internal client requests)

	request.internal

	internal requests generated by Knot Resolver
(e.g. DNSSEC trust anchor updates)

	request.udp

	external requests received over plain UDP
(RFC 1035 [https://tools.ietf.org/html/rfc1035.html])

	request.tcp

	external requests received over plain TCP
(RFC 1035 [https://tools.ietf.org/html/rfc1035.html])

	request.dot

	external requests received over
DNS-over-TLS (RFC 7858 [https://tools.ietf.org/html/rfc7858.html])

	request.doh

	external requests received over
DNS-over-HTTP (RFC 8484 [https://tools.ietf.org/html/rfc8484.html])

	Global answer counters

	answer.total

	total number of answered queries

	answer.cached

	queries answered from cache

	Answers categorized by RCODE

	answer.noerror

	NOERROR answers

	answer.nodata

	NOERROR, but empty answers

	answer.nxdomain

	NXDOMAIN answers

	answer.servfail

	SERVFAIL answers

	Answer latency

	answer.1ms

	completed in 1ms

	answer.10ms

	completed in 10ms

	answer.50ms

	completed in 50ms

	answer.100ms

	completed in 100ms

	answer.250ms

	completed in 250ms

	answer.500ms

	completed in 500ms

	answer.1000ms

	completed in 1000ms

	answer.1500ms

	completed in 1500ms

	answer.slow

	completed in more than 1500ms

	Answer flags

	answer.aa

	authoritative answer

	answer.tc

	truncated answer

	answer.ra

	recursion available

	answer.rd

	recursion desired (in answer!)

	answer.ad

	authentic data (DNSSEC)

	answer.cd

	checking disabled (DNSSEC)

	answer.do

	DNSSEC answer OK

	answer.edns0

	EDNS0 present

	Query flags

	query.edns

	queries with EDNS present

	query.dnssec

	queries with DNSSEC DO=1

Query policies

This module can block, rewrite, or alter inbound queries based on user-defined policies.

Each policy rule has two parts: a filter and an action. A filter selects which queries will be affected by the policy, and action which modifies queries matching the associated filter.

Typically a rule is defined as follows: filter(action(action parameters), filter parameters). For example, a filter can be suffix which matches queries whose suffix part is in specified set, and one of possible actions is DENY, which denies resolution. These are combined together into policy.suffix(policy.DENY, {todname('badguy.example.')}). The rule is effective when it is added into rule table using policy.add(), please see Policy examples.

This module is enabled by default because it implements mandatory RFC 6761 [https://tools.ietf.org/html/rfc6761.html] logic.
When no rule applies to a query, built-in rules for special-use [https://www.iana.org/assignments/special-use-domain-names/special-use-domain-names.xhtml] and locally-served [http://www.iana.org/assignments/locally-served-dns-zones] domain names are applied.
These rules can be overriden by action PASS, see Policy examples below. For debugging purposes you can also add modules.unload('policy') to your config to unload the module.

Filters

A filter selects which queries will be affected by specified action. There are several policy filters available in the policy. table:

	all(action)
- always applies the action

	pattern(action, pattern)
- applies the action if QNAME matches a regular expression [http://lua-users.org/wiki/PatternsTutorial]

	suffix(action, table)
- applies the action if QNAME suffix matches one of suffixes in the table (useful for “is domain in zone” rules),
uses Aho-Corasick [https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_string_matching_algorithm] string matching algorithm from CloudFlare [https://github.com/cloudflare/lua-aho-corasick] (BSD 3-clause)

	policy.suffix_common

	rpz(default_action, path)
- implements a subset of RPZ [https://dnsrpz.info/] in zonefile format. See below for details: policy.rpz.

	slice(slice_func, action, action, ...) - splits the entire domain space
into multiple slices, uses the slicing function to determine to which slice
does the query belong, and perfroms the corresponding action. For details, see
policy.slice.

	custom filter function

Actions

An action is function which modifies DNS query, and is either of type chain or non-chain. So-called chain actions modify the query and allow other rules to evaluate and modify the same query. Non-chain actions have opposite behavior, i.e. modify the query and stop rule processing.

Resolver comes with several actions available in the policy. table:

Non-chain actions

Following actions stop the policy matching on the query, i.e. other rules are not evaluated once rule with following actions matches:

	PASS - let the query pass through; it’s useful to make exceptions before wider rules

	DENY - reply NXDOMAIN authoritatively

	DENY_MSG(msg) - reply NXDOMAIN authoritatively and add explanatory message to additional section

	DROP - terminate query resolution and return SERVFAIL to the requestor

	REFUSE - terminate query resolution and return REFUSED to the requestor

	TC - set TC=1 if the request came through UDP, forcing client to retry with TCP

	FORWARD(ip) - resolve a query via forwarding to an IP while validating and caching locally

	TLS_FORWARD({{ip, authentication}}) - resolve a query via TLS connection forwarding to an IP while validating and caching locally

	STUB(ip) - similar to FORWARD(ip) but without attempting DNSSEC validation.
Each request may be either answered from cache or simply sent to one of the IPs with proxying back the answer.

	REROUTE({{subnet,target}, ...}) - reroute addresses in response matching given subnet to given target, e.g. {'192.0.2.0/24', '127.0.0.0'} will rewrite ‘192.0.2.55’ to ‘127.0.0.55’, see renumber module for more information.

FORWARD, TLS_FORWARD and STUB support up to four IP addresses “in a single call”.

Chain actions

Following actions allow to keep trying to match other rules, until a non-chain action is triggered:

	MIRROR(ip) - mirror query to given IP and continue solving it (useful for partial snooping).

	QTRACE - pretty-print DNS response packets into the log for the query and its sub-queries. It’s useful for debugging weird DNS servers.

	FLAGS(set, clear) - set and/or clear some flags for the query. There can be multiple flags to set/clear. You can just pass a single flag name (string) or a set of names.

Also, it is possible to write your own action (i.e. Lua function). It is possible to implement complex heuristics, e.g. to deflect Slow drip DNS attacks [https://secure64.com/water-torture-slow-drip-dns-ddos-attack] or gray-list resolution of misbehaving zones.

Warning

The policy module currently only looks at whole DNS requests. The rules won’t be re-applied e.g. when following CNAMEs.

Note

The module (and kres) expects domain names in wire format, not textual representation. So each label in name is prefixed with its length, e.g. “example.com” equals to "\7example\3com". You can use convenience function todname('example.com') for automatic conversion.

Forwarding over TLS protocol (DNS-over-TLS)

Policy TLS_FORWARD allows you to forward queries using Transport Layer Security [https://en.wikipedia.org/wiki/Transport_Layer_Security] protocol, which hides the content of your queries from an attacker observing the network traffic. Further details about this protocol can be found in RFC 7858 [https://tools.ietf.org/html/rfc7858.html] and IETF draft dprive-dtls-and-tls-profiles [https://tools.ietf.org/html/draft-ietf-dprive-dtls-and-tls-profiles].

Queries affected by TLS_FORWARD policy will always be resolved over TLS connection. Knot Resolver does not implement fallback to non-TLS connection, so if TLS connection cannot be established or authenticated according to the configuration, the resolution will fail.

To test this feature you need to either configure Knot Resolver as DNS-over-TLS server, or pick some public DNS-over-TLS server. Please see DNS Privacy Project [https://dnsprivacy.org/] homepage for list of public servers.

Note

Some public DNS-over-TLS providers may apply rate-limiting which
makes their service incompatible with Knot Resolver’s TLS forwarding.
Notably, Google Public DNS [https://developers.google.com/speed/public-dns/docs/dns-over-tls] doesn’t
work as of 2019-07-10.

When multiple servers are specified, the one with the lowest round-trip time is used.

CA+hostname authentication

Traditional PKI authentication requires server to present certificate with specified hostname, which is issued by one of trusted CAs. Example policy is:

policy.TLS_FORWARD({
 {'2001:DB8::d0c', hostname='res.example.com'}})

	hostname must be a valid domain name matching server’s certificate. It will also be sent to the server as SNI [https://en.wikipedia.org/wiki/Server_Name_Indication].

	ca_file optionally contains a path to a CA certificate (or certificate bundle) in PEM format [https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail].
If you omit that, the system CA certificate store will be used instead (usually sufficient).
A list of paths is also accepted, but all of them must be valid PEMs.

Key-pinned authentication

Instead of CAs, you can specify hashes of accepted certificates in pin_sha256.
They are in the usual format – base64 from sha256.
You may still specify hostname if you want SNI [https://en.wikipedia.org/wiki/Server_Name_Indication] to be sent.

TLS Examples

modules = { 'policy' }
-- forward all queries over TLS to the specified server
policy.add(policy.all(policy.TLS_FORWARD({{'192.0.2.1', pin_sha256='YQ=='}})))
-- for brevity, other TLS examples omit policy.add(policy.all())
-- single server authenticated using its certificate pin_sha256
 policy.TLS_FORWARD({{'192.0.2.1', pin_sha256='YQ=='}}) -- pin_sha256 is base64-encoded
-- single server authenticated using hostname and system-wide CA certificates
 policy.TLS_FORWARD({{'192.0.2.1', hostname='res.example.com'}})
-- single server using non-standard port
 policy.TLS_FORWARD({{'192.0.2.1@443', pin_sha256='YQ=='}}) -- use @ or # to specify port
-- single server with multiple valid pins (e.g. anycast)
 policy.TLS_FORWARD({{'192.0.2.1', pin_sha256={'YQ==', 'Wg=='}})
-- multiple servers, each with own authenticator
 policy.TLS_FORWARD({ -- please note that { here starts list of servers
 {'192.0.2.1', pin_sha256='Wg=='},
 -- server must present certificate issued by specified CA and hostname must match
 {'2001:DB8::d0c', hostname='res.example.com', ca_file='/etc/knot-resolver/tlsca.crt'}
})

Forwarding to multiple targets

With the use of policy.slice function, it is possible to split the
entire DNS namespace into distinct slices. When used in conjuction with
policy.TLS_FORWARD, it’s possible to forward different queries to different
targets.

policy.add(policy.slice(
 policy.slice_randomize_psl(),
 policy.TLS_FORWARD({{'192.0.2.1', hostname='res.example.com'}}),
 policy.TLS_FORWARD({
 -- multiple servers can be specified for a single slice
 -- the one with lowest round-trip time will be used
 {'193.17.47.1', hostname='odvr.nic.cz'},
 {'185.43.135.1', hostname='odvr.nic.cz'},
 })
))

Note

The privacy implications of using this feature aren’t clear. Since
websites often make requests to multiple domains, these might be forwarded
to different targets. This could result in decreased privacy (e.g. when the
remote targets are both logging or otherwise processing your DNS traffic).
The intended use-case is to use this feature with semi-trusted resolvers
which claim to do no logging (such as those listed on dnsprivacy.org [https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+Test+Servers]), to
decrease the potential exposure of your DNS data to a malicious resolver
operator.

Policy examples

-- Whitelist 'www[0-9].badboy.cz'
policy.add(policy.pattern(policy.PASS, '\4www[0-9]\6badboy\2cz'))
-- Block all names below badboy.cz
policy.add(policy.suffix(policy.DENY, {todname('badboy.cz.')}))

-- Custom rule
local ffi = require('ffi')
local function genRR (state, req)
 local answer = req.answer
 local qry = req:current()
 if qry.stype ~= kres.type.A then
 return state
 end
 ffi.C.kr_pkt_make_auth_header(answer)
 answer:rcode(kres.rcode.NOERROR)
 answer:begin(kres.section.ANSWER)
 answer:put(qry.sname, 900, answer:qclass(), kres.type.A, '\192\168\1\3')
 return kres.DONE
end
policy.add(policy.suffix(genRR, { todname('my.example.cz.') }))

-- Disallow ANY queries
policy.add(function (req, query)
 if query.stype == kres.type.ANY then
 return policy.DROP
 end
end)
-- Enforce local RPZ
policy.add(policy.rpz(policy.DENY, 'blacklist.rpz'))
-- Forward all queries below 'company.se' to given resolver;
-- beware: typically this won't work due to DNSSEC - see "Replacing part..." below
policy.add(policy.suffix(policy.FORWARD('192.168.1.1'), {todname('company.se')}))
-- Forward reverse queries about the 192.168.1.1/24 space to .1 port 5353
-- and do it directly without attempts to validate DNSSEC etc.
policy.add(policy.suffix(policy.STUB('192.168.1.1@5353'), {todname('1.168.192.in-addr.arpa')}))
-- Forward all queries matching pattern
policy.add(policy.pattern(policy.FORWARD('2001:DB8::1'), '\4bad[0-9]\2cz'))
-- Forward all queries (to public resolvers https://www.nic.cz/odvr)
policy.add(policy.all(policy.FORWARD({'2001:678:1::206', '193.29.206.206'})))
-- Print all responses with matching suffix
policy.add(policy.suffix(policy.QTRACE, {todname('rhybar.cz.')}))
-- Print all responses
policy.add(policy.all(policy.QTRACE))
-- Mirror all queries and retrieve information
local rule = policy.add(policy.all(policy.MIRROR('127.0.0.2')))
-- Print information about the rule
print(string.format('id: %d, matched queries: %d', rule.id, rule.count)
-- Reroute all addresses found in answer from 192.0.2.0/24 to 127.0.0.x
-- this policy is enforced on answers, therefore 'postrule'
local rule = policy.add(policy.REROUTE({'192.0.2.0/24', '127.0.0.0'}), true)
-- Delete rule that we just created
policy.del(rule.id)

Replacing part of the DNS tree

You may want to resolve most of the DNS namespace by usual means while letting some other resolver solve specific subtrees.
Such data would typically be rejected by DNSSEC validation starting from the ICANN root keys. Therefore, if you trust the resolver and your link to it, you can simply use the STUB action instead of FORWARD to avoid validation only for those subtrees.

Another issue is caused by caching, because Knot Resolver only keeps a single cache for everything.
For example, if you add an alternative top-level domain while using the ICANN root zone for the rest, at some point the cache may obtain records proving that your top-level domain does not exist, and those records could then be used when the positive records fall out of cache. The easiest work-around is to disable reading from cache for those subtrees; the other resolver is often very close anyway.

Example configuration: graft DNS sub-trees faketldtest, sld.example, and internal.example.com into existing namespace

extraTrees = policy.todnames({'faketldtest', 'sld.example', 'internal.example.com'})
-- Beware: the rule order is important, as STUB is not a chain action.
policy.add(policy.suffix(policy.FLAGS({'NO_CACHE'}), extraTrees))
policy.add(policy.suffix(policy.STUB({'2001:db8::1'}), extraTrees))

Additional properties

Most properties (actions, filters) are described above.

	
policy.add(rule, postrule)

	
	Parameters

	
	rule – added rule, i.e. policy.pattern(policy.DENY, '[0-9]+\2cz')

	postrule – boolean, if true the rule will be evaluated on answer instead of query

	Returns

	rule description

Add a new policy rule that is executed either or queries or answers, depending on the postrule parameter. You can then use the returned rule description to get information and unique identifier for the rule, as well as match count.

	
policy.del(id)

	
	Parameters

	
	id – identifier of a given rule

	Returns

	boolean

Remove a rule from policy list.

	
policy.suffix_common(action, suffix_table[, common_suffix])

	
	Parameters

	
	action – action if the pattern matches QNAME

	suffix_table – table of valid suffixes

	common_suffix – common suffix of entries in suffix_table

Like suffix match, but you can also provide a common suffix of all matches for faster processing (nil otherwise).
This function is faster for small suffix tables (in the order of “hundreds”).

	
policy.rpz(action, path, watch)

	
	Parameters

	
	action – the default action for match in the zone; typically you want policy.DENY

	path – path to zone file | database

	watch – boolean, if not false, the file will be reparsed and the ruleset reloaded on file change

Enforce RPZ [https://dnsrpz.info/] rules. This can be used in conjunction with published blocklist feeds.
The RPZ [https://dnsrpz.info/] operation is well described in this Jan-Piet Mens’s post [http://jpmens.net/2011/04/26/how-to-configure-your-bind-resolvers-to-lie-using-response-policy-zones-rpz/],
or the Pro DNS and BIND [http://www.zytrax.com/books/dns/ch7/rpz.html] book. Here’s compatibility table:

	Policy Action

	RH Value

	Support

	action is used

	.

	yes, if action is DENY

	action is used

	*.

	partial 1

	policy.PASS

	rpz-passthru.

	yes

	policy.DROP

	rpz-drop.

	yes

	policy.TC

	rpz-tcp-only.

	yes

	Modified

	anything

	no

	1

	The specification for *. wants a NODATA answer.
For now, policy.DENY action doing NXDOMAIN is typically used instead.

	Policy Trigger

	Support

	QNAME

	yes

	CLIENT-IP

	partial, may be done with views

	IP

	no

	NSDNAME

	no

	NS-IP

	no

	
policy.slice(slice_func, action[, action[, ...])

	
	Parameters

	
	slice_func – slicing function that returns index based on query

	action – action to be performed for the slice

This function splits the entire domain space into multiple slices (determined
by the number of provided action``s) A ``slice_func is called to determine
which slice a query belongs to. The corresponding action is then executed.

	
policy.slice_randomize_psl(seed = os.time() / (3600 * 24 * 7))

	
	Parameters

	
	seed – seed for random assignment

The function initializes and returns a slicing function, which
deterministically assigns query to a slice based on the QNAME.

It utilizes the Public Suffix List [https://publicsuffix.org] to ensure domains under the same
registrable domain end up in a single slice. (see example below)

seed can be used to re-shuffle the slicing algorhitm when the slicing
function is initialized. By default, the assigment is re-shuffled after one
week (when resolver restart / reloads config). To force a stable
distribution, pass a fixed value. To re-shuffle on every resolver restart,
use os.time().

The following example demonstrates a distribution among 3 slices:

slice 1/3:
example.com
a.example.com
b.example.com
x.b.example.com
example3.com

slice 2/3:
example2.co.uk

slice 3/3:
example.co.uk
a.example.co.uk

	
policy.todnames({name, ...})

	
	Param

	names table of domain names in textual format

Returns table of domain names in wire format converted from strings.

-- Convert single name
assert(todname('example.com') == '\7example\3com\0')
-- Convert table of names
policy.todnames({'example.com', 'me.cz'})
{ '\7example\3com\0', '\2me\2cz\0' }

Views and ACLs

The policy module implements policies for global query matching, e.g. solves “how to react to certain query”.
This module combines it with query source matching, e.g. “who asked the query”. This allows you to create personalized blacklists, filters and ACLs.

There are two identification mechanisms:

	addr
- identifies the client based on his subnet

	tsig
- identifies the client based on a TSIG key name (only for testing purposes, TSIG signature is not verified!)

View module allows you to combine query source information with policy rules.

view:addr('10.0.0.1', policy.suffix(policy.TC, policy.todnames({'example.com'})))

This example will force given client to TCP for names in example.com subtree.
You can combine view selectors with RPZ [https://dnsrpz.info/] to create personalized filters for example.

Warning

Beware that cache is shared by all requests. For example, it is safe
to refuse answer based on who asks the resolver, but trying to serve
different data to different clients will result in unexpected behavior.
Setups like split-horizon which depend on isolated DNS caches
are explicitly not supported.

Example configuration

-- Load modules
modules = { 'view' }
-- Whitelist queries identified by TSIG key
view:tsig('\5mykey', policy.all(policy.PASS))
-- Block local IPv4 clients (ACL like)
view:addr('127.0.0.1', policy.all(policy.DENY))
-- Block local IPv6 clients (ACL like)
view:addr('::1', policy.all(policy.DENY))
-- Drop queries with suffix match for remote client
view:addr('10.0.0.0/8', policy.suffix(policy.DROP, policy.todnames({'xxx'})))
-- RPZ for subset of clients
view:addr('192.168.1.0/24', policy.rpz(policy.PASS, 'whitelist.rpz'))
-- Do not try this - it will pollute cache and surprise you!
-- view:addr('10.0.0.0/8', policy.all(policy.FORWARD('2001:DB8::1')))
-- Drop everything that hasn't matched
view:addr('0.0.0.0/0', policy.all(policy.DROP))

Note

When using systemd socket activation, it’s possible to bind to IPv6
socket that also handles IPv4 connections via v4-mapped-on-v6 addresses.
With this setup, using IPv4 syntax in view:addr() is currently not
supported. Instead, you can use the v4-mapped-on-v6 syntax, e.g.
::ffff:127.0.0.0/104 instead of 127.0.0.0/8.

Rule order

The current implementation is best understood as three separate rule chains:
vanilla policy.add, view:tsig and view:addr.
For each request the rules in these chains get tried one by one until a non-chain policy action gets executed.

By default policy module acts before view module due to policy being loaded by default. If you want to intermingle universal rules with view:addr, you may simply wrap the universal policy rules in view closure like this:

view:addr('0.0.0.0/0', policy.<rule>) -- and
view:addr('::0/0', policy.<rule>)

Properties

	
view:addr(subnet, rule)

	
	Parameters

	
	subnet – client subnet, i.e. 10.0.0.1

	rule – added rule, i.e. policy.pattern(policy.DENY, '[0-9]+\2cz')

Apply rule to clients in given subnet.

	
view:tsig(key, rule)

	
	Parameters

	
	key – client TSIG key domain name, i.e. \5mykey

	rule – added rule, i.e. policy.pattern(policy.DENY, '[0-9]+\2cz')

Apply rule to clients with given TSIG key.

Warning

This just selects rule based on the key name, it doesn’t verify the key or signature yet.

Prefetching records

The module refreshes records that are about to expire when they’re used (having less than 1% of original TTL).
This improves latency for frequently used records, as they are fetched in advance.

It is also able to learn usage patterns and repetitive queries that the server makes. For example, if
it makes a query every day at 18:00, the resolver expects that it is needed by that time and prefetches it
ahead of time. This is helpful to minimize the perceived latency and keeps the cache hot.

Tip

The tracking window and period length determine memory requirements. If you have a server with relatively fast query turnover, keep the period low (hour for start) and shorter tracking window (5 minutes). For personal slower resolver, keep the tracking window longer (i.e. 30 minutes) and period longer (a day), as the habitual queries occur daily. Experiment to get the best results.

Example configuration

modules = {
 predict = {
 window = 15, -- 15 minutes sampling window
 period = 6*(60/15) -- track last 6 hours
 }
}

Defaults are 15 minutes window, 6 hours period.

Tip

Use period 0 to turn off prediction and just do prefetching of expiring records.
That works even without the stats module.

Note

Otherwise this module requires stats module and loads it if not present.

Exported metrics

To visualize the efficiency of the predictions, the module exports following statistics.

	predict.epoch - current prediction epoch (based on time of day and sampling window)

	predict.queue - number of queued queries in current window

	predict.learned - number of learned queries in current window

Properties

	
predict.config({ window = 15, period = 24})

	Reconfigure the predictor to given tracking window and period length. Both parameters are optional.
Window length is in minutes, period is a number of windows that can be kept in memory.
e.g. if a window is 15 minutes, a period of “24” means 6 hours.

HTTP/2 services

This module does the heavy lifting to provide an HTTP/2 enabled
server which provides few built-in services and also allows other
modules to export restful APIs and websocket streams.

One example is statistics module that can stream live metrics on the website,
or publish metrics on request for Prometheus scraper.

By default this module provides two kinds of endpoints,
and unlimited number of “used-defined kinds” can be added in configuration.

	Endpoint

	Explanation

	doh

	DNS-over-HTTP (DoH)

	webmgmt

	built-in web management APIs (includes DoH)

Each network address and port combination can be configured to expose
one kind of endpoint. This is done using the same mechanisms as
network configuration for plain DNS and DNS-over-TLS,
see chapter Network configuration for more details.

Warning

Management endpoint (webmgmt) must not be directly exposed
to untrusted parties. Use reverse-proxy [https://en.wikipedia.org/wiki/Reverse_proxy] like Apache [https://httpd.apache.org/docs/2.4/howto/reverse_proxy.html]
or Nginx [https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/] if you need to authenticate API clients
for the management API.

By default all endpoints share the same configuration for TLS certificates etc.
This can be changed using http.config() configuration call explained below.

Example configuration

This section shows how to configure HTTP module itself. For information how
to configure HTTP server’s IP addresses and ports please see chapter
Network configuration.

-- load HTTP module with defaults (self-signed TLS cert)
modules.load('http')
-- optionally load geoIP database for server map
http.config({
 geoip = 'GeoLite2-City.mmdb',
 -- e.g. https://dev.maxmind.com/geoip/geoip2/geolite2/
 -- and install mmdblua library
})

Now you can reach the web services and APIs, done!

$ curl -k https://localhost:8453
$ curl -k https://localhost:8453/stats

Configuring TLS

By default, the web interface starts HTTPS/2 on specified port using an ephemeral
TLS certificate that is valid for 90 days and is automatically renewed. It is of
course self-signed. Why not use something like
Let’s Encrypt [https://letsencrypt.org]?

Warning

If you use package luaossl < 20181207, intermediate certificate is not sent to clients,
which may cause problems with validating the connection in some cases.

You can disable unecrypted HTTP and enforce HTTPS by passing
tls = true option for all HTTP endpoints:

http.config({
 tls = true,
})

It is also possible to provide different configuration for each
kind of endpoint, e.g. to enforce TLS and use custom certificate only for DoH:

http.config({
 tls = true,
 cert = '/etc/knot-resolver/mycert.crt',
 key = '/etc/knot-resolver/mykey.key',
}, 'doh')

The format of both certificate and key is expected to be PEM, e.g. equivalent to
the outputs of following:

openssl ecparam -genkey -name prime256v1 -out mykey.key
openssl req -new -key mykey.key -out csr.pem
openssl req -x509 -days 90 -key mykey.key -in csr.pem -out mycert.crt

It is also possible to disable HTTPS altogether by passing tls = false option.
Plain HTTP gets handy if you want to use reverse-proxy [https://en.wikipedia.org/wiki/Reverse_proxy] like Apache [https://httpd.apache.org/docs/2.4/howto/reverse_proxy.html] or Nginx [https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/]
for authentication to API etc.
(Unencrypted HTTP could be fine for localhost tests as, for example,
Safari doesn’t allow WebSockets over HTTPS with a self-signed certificate.
Major drawback is that current browsers won’t do HTTP/2 over insecure connection.)

Warning

If you use multiple Knot Resolver instances with these automatically maintained ephemeral certificates,
they currently won’t be shared.
It’s assumed that you don’t want a self-signed certificate for serious deployments anyway.

Built-in services

The HTTP module has several built-in services to use.

	Endpoint

	Service

	Description

	/stats

	Statistics/metrics

	Exported metrics from Statistics collector in JSON format.

	/metrics

	Prometheus metrics

	Exported metrics for Prometheus [https://prometheus.io].

	/trace/:name/:type

	Tracking

	Trace resolution of a DNS query and return the verbose logs.

	/doh

	DNS-over-HTTP

	RFC 8484 [https://tools.ietf.org/html/rfc8484.html] endpoint, see DNS-over-HTTP (DoH).

Prometheus metrics endpoint

The module exposes /metrics endpoint that serves internal metrics in Prometheus [https://prometheus.io] text format.
You can use it out of the box:

$ curl -k https://localhost:8453/metrics | tail
TYPE latency histogram
latency_bucket{le=10} 2.000000
latency_bucket{le=50} 2.000000
latency_bucket{le=100} 2.000000
latency_bucket{le=250} 2.000000
latency_bucket{le=500} 2.000000
latency_bucket{le=1000} 2.000000
latency_bucket{le=1500} 2.000000
latency_bucket{le=+Inf} 2.000000
latency_count 2.000000
latency_sum 11.000000

You can namespace the metrics in configuration, using http.prometheus.namespace attribute:

modules.load('http')
-- Set Prometheus namespace
http.prometheus.namespace = 'resolver_'

You can also add custom metrics or rewrite existing metrics before they are returned to Prometheus client.

modules.load('http')
-- Add an arbitrary metric to Prometheus
http.prometheus.finalize = function (metrics)
 table.insert(metrics, 'build_info{version="1.2.3"} 1')
end

Tracing requests

With the /trace endpoint you can trace various aspects of the request execution.
The basic mode allows you to resolve a query and trace verbose logs (and messages received):

$ curl https://localhost:8453/trace/e.root-servers.net
[8138] [iter] 'e.root-servers.net.' type 'A' created outbound query, parent id 0
[8138] [rc] => rank: 020, lowest 020, e.root-servers.net. A
[8138] [rc] => satisfied from cache
[8138] [iter] <= answer received:
;; ->>HEADER<<- opcode: QUERY; status: NOERROR; id: 8138
;; Flags: qr aa QUERY: 1; ANSWER: 0; AUTHORITY: 0; ADDITIONAL: 0

;; QUESTION SECTION
e.root-servers.net. A

;; ANSWER SECTION
e.root-servers.net. 3556353 A 192.203.230.10

[8138] [iter] <= rcode: NOERROR
[8138] [resl] finished: 4, queries: 1, mempool: 81952 B

How to expose custom services over HTTP

Each kind of endpoint provides table of HTTP endpoints, and the default table
can be replaced using http.config() configuration call
which allows your to provide your own HTTP endpoints.

It contains tables describing a triplet - {mime, on_serve, on_websocket}.
In order to register a new webmgmt HTTP endpoint
add the new endpoint description to respective table:

-- custom function to handle HTTP /health requests
local on_health = {'application/json',
function (h, stream)
 -- API call, return a JSON table
 return {state = 'up', uptime = 0}
end,
function (h, ws)
 -- Stream current status every second
 local ok = true
 while ok do
 local push = tojson('up')
 ok = ws:send(tojson({'up'}))
 require('cqueues').sleep(1)
 end
 -- Finalize the WebSocket
 ws:close()
end}

modules.load('http')
-- copy all existing webmgmt endpoints
my_mgmt_endpoints = http.configs._builtin.webmgmt.endpoints
-- add custom endpoint to the copy
my_mgmt_endpoints['/health'] = on_health
-- use custom HTTP configuration for webmgmt
http.config({
 endpoints = my_mgmt_endpoints
}, 'webmgmt')

Then you can query the API endpoint, or tail the WebSocket using curl.

$ curl -k https://localhost:8453/health
{"state":"up","uptime":0}
$ curl -k -i -N -H "Connection: Upgrade" -H "Upgrade: websocket" -H "Host: localhost:8453/health" -H "Sec-Websocket-Key: nope" -H "Sec-Websocket-Version: 13" https://localhost:8453/health
HTTP/1.1 101 Switching Protocols
upgrade: websocket
sec-websocket-accept: eg18mwU7CDRGUF1Q+EJwPM335eM=
connection: upgrade

?["up"]?["up"]?["up"]

Since the stream handlers are effectively coroutines, you are free to keep state
and yield using cqueues library [http://www.25thandclement.com/~william/projects/cqueues.html].

This is especially useful for WebSockets, as you can stream content in a simple loop instead of
chains of callbacks.

Last thing you can publish from modules are “snippets”. Snippets are plain pieces of HTML code that are rendered at the end of the built-in webpage. The snippets can be extended with JS code to talk to already
exported restful APIs and subscribe to WebSockets.

http.snippets['/health'] = {'Health service', '<p>UP!</p>'}

How to expose custom RESTful services

A RESTful service is likely to respond differently to different type of methods and requests,
there are three things that you can do in a service handler to send back results.
First is to just send whatever you want to send back, it has to respect MIME type that the service
declared in the endpoint definition. The response code would then be 200 OK, any non-string
responses will be packed to JSON. Alternatively, you can respond with a number corresponding to
the HTTP response code or send headers and body yourself.

-- Our upvalue
local value = 42

-- Expose the service
local service = {'application/json',
function (h, stream)
 -- Get request method and deal with it properly
 local m = h:get(':method')
 local path = h:get(':path')
 log('[service] method %s path %s', m, path)
 -- Return table, response code will be '200 OK'
 if m == 'GET' then
 return {key = path, value = value}
 -- Save body, perform check and either respond with 505 or 200 OK
 elseif m == 'POST' then
 local data = stream:get_body_as_string()
 if not tonumber(data) then
 return 500, 'Not a good request'
 end
 value = tonumber(data)
 -- Unsupported method, return 405 Method not allowed
 else
 return 405, 'Cannot do that'
 end
end}
modules.load('http')
http.config({
 endpoints = { ['/service'] = service }
}, 'myservice')
-- do not forget to create socket of new kind using
-- net.listen(..., { kind = 'myservice' })
-- or configure systemd socket kresd-myservice.socket

In some cases you might need to send back your own headers instead of default provided by HTTP handler,
you can do this, but then you have to return false to notify handler that it shouldn’t try to generate
a response.

local headers = require('http.headers')
function (h, stream)
 -- Send back headers
 local hsend = headers.new()
 hsend:append(':status', '200')
 hsend:append('content-type', 'binary/octet-stream')
 assert(stream:write_headers(hsend, false))
 -- Send back data
 local data = 'binary-data'
 assert(stream:write_chunk(data, true))
 -- Disable default handler action
 return false
end

Dependencies

	lua-http [https://github.com/daurnimator/lua-http] (>= 0.3) available in LuaRocks

If you’re installing via Homebrew on OS X, you need OpenSSL too.

$ brew update
$ brew install openssl
$ brew link openssl --force # Override system OpenSSL

Any other system can install from LuaRocks directly:

$ luarocks install http

	mmdblua [https://github.com/daurnimator/mmdblua] available in LuaRocks

$ luarocks install --server=https://luarocks.org/dev mmdblua
$ curl -O https://geolite.maxmind.com/download/geoip/database/GeoLite2-City.mmdb.gz
$ gzip -d GeoLite2-City.mmdb.gz

DNS-over-HTTP (DoH)

Warning

	DoH support was added in version 4.0.0 and is subject to change.

	DoH implementation in Knot Resolver is intended for experimentation
only as there is insufficient experience with the module
and the DoH protocol in general.

	For the time being it is recommended to run DoH endpoint
on a separate machine which is not handling normal DNS operations.

	More information about controversies around the DoH can be found
in blog posts
DNS Privacy at IETF 104 [http://www.potaroo.net/ispcol/2019-04/angst.html]
and
More DOH [http://www.potaroo.net/ispcol/2019-04/moredoh.html]
by Geoff Huston.

	Knot Resolver developers do not endorse use of the DoH protocol.

Following section compares several options for running a DoH capable server.
Make sure you read through this chapter before exposing the DoH service to users.

DoH support in Knot Resolver

The HTTP module in Knot Resolver also provides support for
binary DNS-over-HTTP protocol standardized in RFC 8484 [https://tools.ietf.org/html/rfc8484.html].

This integrated DoH server has following properties:

	Scenario

	HTTP module in Knot Resolver configured to provide /doh endpoint
(as shown below).

	Advantages

	
	Integrated solution provides management and monitoring in one place.

	Supports ACLs for DNS traffic based on client’s IP address.

	Disadvantages

	
	Exposes Knot Resolver instance to attacks over HTTP.

	Does not offer fine grained authorization and logging at HTTP level.

	Let’s Encrypt integration is not automated.

Example configuration is part of examples for generic
HTTP module. After configuring your endpoint you can reach the DoH endpoint using
URL https://your.resolver.hostname.example/doh, done!

query for www.knot-resolver.cz AAAA
$ curl -k https://your.resolver.hostname.example/doh?dns=l1sBAAABAAAAAAAAA3d3dw1rbm90LXJlc29sdmVyAmN6AAAcAAE

Please see section Configuring TLS for further details about TLS configuration.

Alternative configurations use HTTP proxies between clients and a Knot Resolver instance:

Normal HTTP proxy

	Scenario

	A standard HTTP-compliant proxy is configured to proxy GET
and POST requests to HTTP endpoint /doh to a machine
running Knot Resolver.

	Advantages

	
	Protects Knot Resolver instance from
some types of attacks at HTTP level.

	Allows fine-grained filtering and logging at HTTP level.

	Let’s Encrypt integration is readily available.

	Is based on mature software.

	Disadvantages

	
	Fine-grained ACLs for DNS traffic are not available because
proxy hides IP address of client sending DNS query.

	More complicated setup with two components (proxy + Knot Resolver).

HTTP proxy with DoH support

	Scenario

	HTTP proxy extended with a
special module for DNS-over-HTTP [https://github.com/facebookexperimental/doh-proxy].
The module transforms HTTP requests to standard DNS queries
which are then processed by Knot Resolver.
DNS replies from Knot Resolver are then transformed back to HTTP
encoding by the proxy.

	Advantages

	
	Protects Knot Resolver instance from all attacks at HTTP level.

	Allows fine-grained filtering and logging at HTTP level.

	Let’s Encrypt integration is readily available
if proxy is based on a standard HTTP software.

	Disadvantages

	
	Fine-grained ACLs for DNS traffic are not available because
proxy hides IP address of client sending DNS query.
(Unless proxy and resolver are using non-standard packet extensions like
DNS X-Proxied-For [https://datatracker.ietf.org/doc/draft-bellis-dnsop-xpf/].)

	More complicated setup with three components (proxy + special module + Knot Resolver).

Client configuration

Most common client today is web browser Firefox. Relevant configuration is described e.g. in following
article [https://www.internetsociety.org/blog/2018/12/dns-privacy-support-in-mozilla-firefox/].
To use your own DoH server just change network.trr.uri configuration option
to match URL of your DoH endpoint.

More detailed description of configuration options in Firefox can be found
in article
Inside Firefox’s DOH engine [https://daniel.haxx.se/blog/2018/06/03/inside-firefoxs-doh-engine/]
by Daniel Stenberg.

Warning

Please note that Knot Resolver developers are not as enthusiastic
about DoH technology as author of the article linked above,
make sure you read warnings at beginning of this section.

DNS Application Firewall

This module is a high-level interface for other powerful filtering modules and DNS views. It provides an easy interface to apply and monitor DNS filtering rules and a persistent memory for them. It also provides a restful service interface and an HTTP interface.

Example configuration

Firewall rules are declarative and consist of filters and actions. Filters have field operator operand notation (e.g. qname = example.com), and may be chained using AND/OR keywords. Actions may or may not have parameters after the action name.

-- Let's write some daft rules!
modules = { 'daf' }

-- Block all queries with QNAME = example.com
daf.add 'qname = example.com deny'

-- Filters can be combined using AND/OR...
-- Block all queries with QNAME match regex and coming from given subnet
daf.add 'qname ~ %w+.example.com AND src = 192.0.2.0/24 deny'

-- We also can reroute addresses in response to alternate target
-- This reroutes 1.2.3.4 to localhost
daf.add 'src = 127.0.0.0/8 reroute 192.0.2.1-127.0.0.1'

-- Subnets work too, this reroutes a whole subnet
-- e.g. 192.0.2.55 to 127.0.0.55
daf.add 'src = 127.0.0.0/8 reroute 192.0.2.0/24-127.0.0.0'

-- This rewrites all A answers for 'example.com' from
-- whatever the original address was to 127.0.0.2
daf.add 'src = 127.0.0.0/8 rewrite example.com A 127.0.0.2'

-- Mirror queries matching given name to DNS logger
daf.add 'qname ~ %w+.example.com mirror 127.0.0.2'
daf.add 'qname ~ example-%d.com mirror 127.0.0.3@5353'

-- Forward queries from subnet
daf.add 'src = 127.0.0.1/8 forward 127.0.0.1@5353'
-- Forward to multiple targets
daf.add 'src = 127.0.0.1/8 forward 127.0.0.1@5353,127.0.0.2@5353'

-- Truncate queries based on destination IPs
daf.add 'dst = 192.0.2.51 truncate'

-- Disable a rule
daf.disable 2
-- Enable a rule
daf.enable 2
-- Delete a rule
daf.del 2

If you’re not sure what firewall rules are in effect, see daf.rules:

-- Show active rules
> daf.rules
[1] => {
 [rule] => {
 [count] => 42
 [id] => 1
 [cb] => function: 0x1a3eda38
 }
 [info] => qname = example.com AND src = 127.0.0.1/8 deny
 [policy] => function: 0x1a3eda38
}
[2] => {
 [rule] => {
 [suspended] => true
 [count] => 123522
 [id] => 2
 [cb] => function: 0x1a3ede88
 }
 [info] => qname ~ %w+.facebook.com AND src = 127.0.0.1/8 deny...
 [policy] => function: 0x1a3ede88
}

Web interface

If you have HTTP/2 loaded, the firewall automatically loads as a snippet.
You can create, track, suspend and remove firewall rules from the web interface.
If you load both modules, you have to load daf after http.

RESTful interface

The module also exports a RESTful API for operations over rule chains.

	URL

	HTTP Verb

	Action

	/daf

	GET

	Return JSON list of active rules.

	/daf

	POST

	Insert new rule, rule string is expected in body. Returns rule information in JSON.

	/daf/<id>

	GET

	Retrieve a rule matching given ID.

	/daf/<id>

	DELETE

	Delete a rule matching given ID.

	/daf/<id>/<prop>/<val>

	PATCH

	Modify given rule, for example /daf/3/active/false suspends rule 3.

This interface is used by the web interface for all operations, but you can also use it directly
for testing.

Get current rule set
$ curl -s -X GET http://localhost:8453/daf | jq .
{}

Create new rule
$ curl -s -X POST -d "src = 127.0.0.1 pass" http://localhost:8453/daf | jq .
{
 "count": 0,
 "active": true,
 "info": "src = 127.0.0.1 pass",
 "id": 1
}

Disable rule
$ curl -s -X PATCH http://localhost:8453/daf/1/active/false | jq .
true

Retrieve a rule information
$ curl -s -X GET http://localhost:8453/daf/1 | jq .
{
 "count": 4,
 "active": true,
 "info": "src = 127.0.0.1 pass",
 "id": 1
}

Delete a rule
$ curl -s -X DELETE http://localhost:8453/daf/1 | jq .
true

Rebinding protection

This module provides protection from DNS Rebinding attack [https://en.wikipedia.org/wiki/DNS_rebinding] by blocking
answers which cointain IPv4 [https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml] or IPv6 [https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml] addresses for private use
(or some other special-use addresses).

To enable this module insert following line into your configuration file:

modules.load('rebinding < iterate')

Please note that this module does not offer stable configuration interface
yet. For this reason it is suitable mainly for public resolver operators
who do not need to whitelist certain subnets.

Warning

DNS Blacklists (RFC 5782 [https://tools.ietf.org/html/rfc5782#section-2.1]) often use 127.0.0.0/8 to blacklist
a domain. Using the rebinding module prevents DNSBL from functioning
properly.

Graphite module

The module sends statistics over the Graphite [https://graphite.readthedocs.io/en/latest/feeding-carbon.html] protocol to either Graphite [https://graphite.readthedocs.io/en/latest/feeding-carbon.html], Metronome [https://github.com/ahuPowerDNS/metronome], InfluxDB [https://influxdb.com/] or any compatible storage. This allows powerful visualization over metrics collected by Knot Resolver.

Tip

The Graphite server is challenging to get up and running, InfluxDB [https://influxdb.com/] combined with Grafana [http://grafana.org/] are much easier, and provide richer set of options and available front-ends. Metronome [https://github.com/ahuPowerDNS/metronome] by PowerDNS alternatively provides a mini-graphite server for much simpler setups.

Example configuration

Only the host parameter is mandatory.

By default the module uses UDP so it doesn’t guarantee the delivery, set tcp = true to enable Graphite over TCP. If the TCP consumer goes down or the connection with Graphite is lost, resolver will periodically attempt to reconnect with it.

modules = {
 graphite = {
 prefix = hostname(), -- optional metric prefix
 host = '127.0.0.1', -- graphite server address
 port = 2003, -- graphite server port
 interval = 5 * sec, -- publish interval
 tcp = false -- set to true if want TCP mode
 }
}

The module supports sending data to multiple servers at once.

modules = {
 graphite = {
 host = { '127.0.0.1', '1.2.3.4', '::1' },
 }
}

Dependencies

	luasocket [http://w3.impa.br/~diego/software/luasocket/] available in LuaRocks

$ luarocks install luasocket

Etcd module

The module connects to Etcd peers and watches for configuration change.
By default, the module looks for the subtree under /knot-resolver directory,
but you can change this in the configuration [https://github.com/mah0x211/lua-etcd#cli-err--etcdnew-optiontable-].

The subtree structure corresponds to the configuration variables in the declarative style.

$ etcdctl set /knot-resolvevr/net/127.0.0.1 53
$ etcdctl set /knot-resolver/cache/size 10000000

Configures all listening nodes to following configuration:

net = { '127.0.0.1' }
cache.size = 10000000

Example configuration

modules = {
 etcd = {
 prefix = '/knot-resolver',
 peer = 'http://127.0.0.1:7001'
 }
}

Warning

Work in progress!

Dependencies

	lua-etcd [https://github.com/mah0x211/lua-etcd] available in LuaRocks

$ luarocks install etcd --from=https://mah0x211.github.io/rocks/

DNS64

The module for RFC 6147 [https://tools.ietf.org/html/rfc6147.html] DNS64 AAAA-from-A record synthesis, it is used to enable client-server communication between an IPv6-only client and an IPv4-only server. See the well written introduction [https://doc.powerdns.com/md/recursor/dns64] in the PowerDNS documentation.
If no address is passed (i.e. nil), the well-known prefix 64:ff9b:: is used.

Warning

The module currently won’t work well with policy.STUB.
Also, the IPv6 passed in configuration is assumed to be /96, and
PTR synthesis and “exclusion prefixes” aren’t implemented.

Tip

The A record sub-requests will be DNSSEC secured, but the synthetic AAAA records can’t be. Make sure the last mile between stub and resolver is secure to avoid spoofing.

Example configuration

-- Load the module with a NAT64 address
modules = { dns64 = 'fe80::21b:77ff:0:0' }
-- Reconfigure later
dns64.config('fe80::21b:aabb:0:0')

Renumber

The module renumbers addresses in answers to different address space.
e.g. you can redirect malicious addresses to a blackhole, or use private address ranges
in local zones, that will be remapped to real addresses by the resolver.

Warning

While requests are still validated using DNSSEC, the signatures are stripped from final answer. The reason is that the address synthesis breaks signatures. You can see whether an answer was valid or not based on the AD flag.

Example configuration

modules = {
 renumber = {
 -- Source subnet, destination subnet
 {'10.10.10.0/24', '192.168.1.0'},
 -- Remap /16 block to localhost address range
 {'166.66.0.0/16', '127.0.0.0'}
 }
}

DNSSEC validation failure logging

This module adds error message for each DNSSEC validation failure.
It is meant to provide hint to operators which queries should be
investigated using diagnostic tools like DNSViz [http://dnsviz.net/].

Add following line to your configuration file to enable it:

modules.load('bogus_log')

Example of error message logged by this module:

DNSSEC validation failure dnssec-failed.org. DNSKEY

List of most frequent queries which fail as DNSSEC bogus can be obtained at run-time:

> bogus_log.frequent()
[1] => {
 [type] => DNSKEY
 [count] => 1
 [name] => dnssec-failed.org.
}
[2] => {
 [type] => DNSKEY
 [count] => 13
 [name] => rhybar.cz.
}

Please note that in future this module might be replaced
with some other way to log this information.

Name Server Identifier (NSID)

This module provides server-side support for RFC 5001 [https://tools.ietf.org/html/rfc5001.html]
and is not enabled by default.

DNS clients can request resolver to send back its NSID along with the reply
to a DNS request. This is useful for identification of resolver instances
in larger services (using anycast or load balancers).

This is useful tool for debugging larger services,
as it reveals which particular resolver instance sent the reply.

NSID value can be configured in the resolver’s configuration file:

modules.load('nsid')
nsid.name('instance 1')

You can also obtain configured NSID value:

nsid.name()
instance 1

The module can be disabled at run-time:

modules.unload('nsid')

Workarounds

A simple module that alters resolver behavior on specific broken sub-domains.
Currently it mainly disables case randomization on them.

Running

modules = { 'workarounds < iterate' }

Dnstap

Dnstap module currently supports logging dns responses to a unix socket
in dnstap format using fstrm framing library. The unix socket and the
socket reader should be present before starting kresd.

Configuration

Tunables:

	socket_path: the the unix socket file where dnstap messages will be sent

	log_responses: if true responses in wire format will be logged

modules = {
 dnstap = {
 socket_path = "/tmp/dnstap.sock",
 log_responses = true
 }
}

Signaling Trust Anchor Knowledge in DNSSEC

The module for Signaling Trust Anchor Knowledge in DNSSEC Using Key Tag Query,
implemented according to RFC 8145#section-5 [https://tools.ietf.org/html/rfc8145.html#section-5].

This feature allows validating resolvers to signal to authoritative servers
which keys are referenced in their chain of trust. The data from such
signaling allow zone administrators to monitor the progress of rollovers
in a DNSSEC-signed zone.

This mechanism serve to measure the acceptance and use of new DNSSEC
trust anchors and key signing keys (KSKs). This signaling data can be
used by zone administrators as a gauge to measure the successful deployment
of new keys. This is of particular interest for the DNS root zone in the event
of key and/or algorithm rollovers that rely on RFC 5011 [https://tools.ietf.org/html/rfc5011.html] to automatically
update a validating DNS resolver’s trust anchor.

Attention

Experience from root zone KSK rollover in 2018 shows that this mechanism
by itself is not sufficient to reliably measure acceptance of the new key.
Nevertheless, some DNS researchers found it is useful in combination
with other data so we left it enabled for now. This default might change
once more information is available.

This module is enabled by default. You may use modules.unload('ta_signal_query')
in your configuration.

Sentinel for Detecting Trusted Root Keys

The module implementing A Root Key Trust Anchor Sentinel for DNSSEC
according to draft-ietf-dnsop-kskroll-sentinel-12 [https://tools.ietf.org/html/draft-ietf-dnsop-kskroll-sentinel-12].

This feature allows users of validating resolver to detect which root keys
are configured in their chain of trust. The data from such
signaling are necessary to monitor the progress of the DNSSEC root key rollover.

This module is enabled by default and we urge users not to disable it.
If it is absolutely necessary you may add modules.unload('ta_sentinel')
to your configuration to disable it.

Priming module

The module for Initializing a DNS Resolver with Priming Queries implemented
according to RFC 8109 [https://tools.ietf.org/html/rfc8109.html]. Purpose of the module is to keep up-to-date list of
root DNS servers and associated IP addresses.

Result of successful priming query replaces root hints distributed with
the resolver software. Unlike other DNS resolvers, Knot Resolver caches
result of priming query on disk and keeps the data between restarts until
TTL expires.

This module is enabled by default and it is not recommended to disable it.
For debugging purposes you may disable the module by appending
modules.unload('priming') to your configuration.

System time skew detector

This module compares local system time with inception and expiration time
bounds in DNSSEC signatures for . NS records. If the local system time is
outside of these bounds, it is likely a misconfiguration which will cause
all DNSSEC validation (and resolution) to fail.

In case of mismatch, a warning message will be logged to help with
further diagnostics.

Warning

Information printed by this module can be forged by a network attacker!
System administrator MUST verify values printed by this module and
fix local system time using a trusted source.

This module is useful for debugging purposes. It runs only once during resolver
start does not anything after that. It is enabled by default.
You may disable the module by appending
modules.unload('detect_time_skew') to your configuration.

Detect discontinuous jumps in the system time

This module detect discontinuous jumps in the system time when resolver
is running. It clears cache when a significant backward time jumps occurs.

Time jumps are usually created by NTP time change or by admin intervention.
These change can affect cache records as they store timestamp and TTL in real
time.

If you want to preserve cache during time travel you should disable
this module by modules.unload('detect_time_jump').

Due to the way monotonic system time works on typical systems,
suspend-resume cycles will be perceived as forward time jumps,
but this direction of shift does not have the risk of using records
beyond their intended TTL, so forward jumps do not cause erasing the cache.

Root on loopback (RFC 7706)

Knot Resolver developers decided that pure implementation of RFC 7706 [https://tools.ietf.org/html/rfc7706.html] is a bad idea so it is not implemented in the form envisioned by the RFC. You can get the very similar effect without its downsides by combining prefill and serve_stale modules with Aggressive Use of DNSSEC-Validated Cache (RFC 8198 [https://tools.ietf.org/html/rfc8198.html]) behavior which is enabled automatically together with DNSSEC validation.

Cache prefilling

This module provides ability to periodically prefill DNS cache by importing root zone data obtained over HTTPS.

Intended users of this module are big resolver operators which will benefit from decreased latencies and smaller amount of traffic towards DNS root servets.

Example configuration is:

modules.load('prefill')
prefill.config({
 ['.'] = {
 url = 'https://www.internic.net/domain/root.zone',
 ca_file = '/etc/pki/tls/certs/ca-bundle.crt',
 interval = 86400 -- seconds
 }
})

This configuration downloads zone file from URL https://www.internic.net/domain/root.zone and imports it into cache every 86400 seconds (1 day). The HTTPS connection is authenticated using CA certificate from file /etc/pki/tls/certs/ca-bundle.crt and signed zone content is validated using DNSSEC.

Root zone to import must be signed using DNSSEC and the resolver must have valid DNSSEC configuration.

	Parameter

	Description

	ca_file

	path to CA certificate bundle used to authenticate the HTTPS connection

	interval

	number of seconds between zone data refresh attempts

	url

	URL of a file in RFC 1035 [https://tools.ietf.org/html/rfc1035.html] zone file format

Only root zone import is supported at the moment.

Dependencies

Depends on the luasec [https://luarocks.org/modules/brunoos/luasec] and luafilesystem [https://keplerproject.github.io/luafilesystem/] libraries.

Serve stale

Demo module that allows using timed-out records in case kresd is
unable to contact upstream servers.

By default it allows stale-ness by up to one day,
after roughly four seconds trying to contact the servers.
It’s quite configurable/flexible; see the beginning of the module source for details.
See also the RFC draft [https://tools.ietf.org/html/draft-ietf-dnsop-serve-stale-00] (not fully followed) and cache.ns_tout.

Running

modules = { 'serve_stale < cache' }

EDNS keepalive

The edns_keepalive module implements RFC 7828 [https://tools.ietf.org/html/rfc7828.html] for clients connecting to Knot Resolver via TCP and TLS.
Note that client connections are timed-out the same way regardless of them sending the EDNS option;
the module just allows clients to discover the timeout.

When connecting to servers, Knot Resolver does not send this EDNS option.
It still attempts to reuse established connections intelligently.

Experimental DNS-over-TLS Auto-discovery

This experimental module provides automatic discovery of authoritative servers’ supporting DNS-over-TLS.
The module uses magic NS names to detect SPKI [https://en.wikipedia.org/wiki/Simple_public-key_infrastructure] fingerprint which is very similar to dnscurve [https://dnscurve.org/] mechanism.

Warning

This protocol and module is experimental and can be changed or removed at any time. Use at own risk, security properties were not analyzed!

How it works

The module will look for NS target names formatted as:
dot-{base32(sha256(SPKI))}....

For instance, Knot Resolver will detect NS names formatted like this

example.com NS dot-tpwxmgqdaurcqxqsckxvdq5sty3opxlgcbjj43kumdq62kpqr72a.example.com

and automatically discover that example.com NS supports DoT with the base64-encoded SPKI digest of m+12GgMFIiheEhKvUcOynjbn3WYQUp5tVGDh7Snwj/Q=
and will associate it with the IPs of dot-tpwxmgqdaurcqxqsckxvdq5sty3opxlgcbjj43kumdq62kpqr72a.example.com.

In that example, the base32 encoded (no padding) version of the sha256 PIN is tpwxmgqdaurcqxqsckxvdq5sty3opxlgcbjj43kumdq62kpqr72a, which when
converted to base64 translates to m+12GgMFIiheEhKvUcOynjbn3WYQUp5tVGDh7Snwj/Q=.

Generating NS target names

To generate the NS target name, use the following command to generate the base32 encoded string of the SPKI fingerprint:

openssl x509 -in /path/to/cert.pem -pubkey -noout | \
openssl pkey -pubin -outform der | \
openssl dgst -sha256 -binary | \
base32 | tr -d '=' | tr '[:upper:]' '[:lower:]'
tpwxmgqdaurcqxqsckxvdq5sty3opxlgcbjj43kumdq62kpqr72a

Then add a target to your NS with: dot-${b32}.a.example.com

Finally, map dot-${b32}.a.example.com to the right set of IPs.

...
...
;; QUESTION SECTION:
;example.com. IN NS

;; AUTHORITY SECTION:
example.com. 3600 IN NS dot-tpwxmgqdaurcqxqsckxvdq5sty3opxlgcbjj43kumdq62kpqr72a.a.example.com.
example.com. 3600 IN NS dot-tpwxmgqdaurcqxqsckxvdq5sty3opxlgcbjj43kumdq62kpqr72a.b.example.com.

;; ADDITIONAL SECTION:
dot-tpwxmgqdaurcqxqsckxvdq5sty3opxlgcbjj43kumdq62kpqr72a.a.example.com. 3600 IN A 192.0.2.1
dot-tpwxmgqdaurcqxqsckxvdq5sty3opxlgcbjj43kumdq62kpqr72a.b.example.com. 3600 IN AAAA 2001:DB8::1
...
...

Example configuration

To enable the module, add this snippet to your config:

-- Start an experiment, use with caution
modules.load('experimental_dot_auth')

This module requires standard basexx Lua library which is typically provided by lua-basexx package.

Caveats

The module relies on seeing the reply of the NS query and as such will not work
if Knot Resolver uses data from its cache. You may need to delete the cache before starting kresd to work around this.

The module also assumes that the NS query answer will return both the NS targets in the Authority section as well as the glue records in the Additional section.

Dependencies

	lua-basexx [https://github.com/aiq/basexx] available in LuaRocks

Refuse queries without RD bit

This module ensures all queries without RD (recursion desired) bit set in query
are answered with REFUSED. This prevents snooping on the resolver’s cache content.

The module is loaded by default. If you’d like to disable this behavior, you can
unload it:

modules.unload('refuse_nord')

Upgrading

This section summarizes steps required for upgrade to newer Knot Resolver versions.
We advise users to also read Release notes for respective versions.

4.x to 4.2.1+

Users

	If you have previously installed knot-resolver-dbgsym package on Debian,
please remove it and install knot-resolver-dbg instead.

3.x to 4.x

Users

	DNSSEC validation is now turned on by default. If you need to disable it, see
Trust anchors and DNSSEC.

	-k/--keyfile and -K/--keyfile-ro daemon options were removed. If needed,
use trust_anchors.add_file() in configuration file instead.

	Configuration for HTTP module changed significantly as result of
adding DNS-over-HTTP (DoH) support. Please see examples below.

	In case you are using your own custom modules, move them to the new module
location. The exact location depends on your distribution. Generally, modules previously
in /usr/lib/kdns_modules should be moved to /usr/lib/knot-resolver/kres_modules.

Configuration file

	trust_anchors.file, trust_anchors.config() and trust_anchors.negative
aliases were removed to avoid duplicity and confusion. Migration table:

	3.x configuration

	4.x configuration

	trust_anchors.file = path

	trust_anchors.add_file(path)

	trust_anchors.config(path, readonly)

	trust_anchors.add_file(path, readonly)

	trust_anchors.negative = nta_set

	trust_anchors.set_insecure(nta_set)

	trust_anchors.keyfile_default is no longer accessible and is can be set
only at compile time. To turn off DNSSEC, use trust_anchors.remove().

	3.x configuration

	4.x configuration

	trust_anchors.keyfile_default = nil

	trust_anchors.remove('.')

	Network for HTTP endpoints is now configured using same mechanism as for normal DNS enpoints,
please refer to chapter Network configuration. Migration table:

	3.x configuration

	4.x configuration

	modules = { http = { host = '192.0.2.1', port = 443 }}

	see chapter Network configuration

	http.config({ host = '192.0.2.1', port = 443 })

	see chapter Network configuration

	modules = { http = { endpoints = ... }}

	see chapter How to expose custom services over HTTP

	http.config({ endpoints = ... })

	see chapter How to expose custom services over HTTP

Packagers & Developers

	Knot DNS >= 2.8 is required.

	meson >= 0.46 and ninja is required.

	meson build system is now used for compiling the project. For instructions, see
the Building from sources. Packagers should pay attention to section Packaging
for information about systemd unit files and trust anchors.

	Embedding LMDB is no longer supported, lmdb is now required as an external dependency.

	Trust anchors file from upstream is installed and used as default unless you
override keyfile_default during build.

Module changes

	Default module location has changed from {libdir}/kdns_modules to
{libdir}/knot-resolver/kres_modules. Modules are now in the lua namespace
kres_modules.*.

	kr_straddr_split() API has changed.

	C modules defining *_layer or *_props symbols need to use a different style, but it’s typically a trivial change.
Instead of exporting the corresponding symbols, the module should assign pointers to its static structures inside its *_init() function. Example migration:
bogus_log module [https://gitlab.labs.nic.cz/knot/knot-resolver/commit/2875a3970#9fa69cdc6ee1903dc22e3262f58996395acab364].

2.x to 3.x

Users

	Module Static hints has option hints.use_nodata() enabled by default,
which is what most users expect. Add hints.use_nodata(false) to your config
to revert to the old behavior.

	Modules cookie and version were removed.
Please remove relevant configuration lines with modules.load() and modules =
from configuration file.

	Valid configuration must open cache using cache.open() or cache.size =
before executing cache operations like cache.clear().
(Older versions were silently ignoring such cache operations.)

Packagers & Developers

	Knot DNS >= 2.7.2 is required.

Module changes

	API for Lua modules was refactored, please see Significant Lua API changes.

	New layer was added: answer_finalize.

	kr_request keeps ::qsource.packet beyond the begin layer.

	kr_request::qsource.tcp renamed to ::qsource.flags.tcp.

	kr_request::has_tls renamed to ::qsource.flags.tls.

	kr_zonecut_add(), kr_zonecut_del() and kr_nsrep_sort() changed
parameters slightly.

Release notes

Knot Resolver 4.2.1 (2019-09-26)

Bugfixes

	rebinding module: fix handling some requests, respect ALLOW_LOCAL flag

	fix incorrect SERVFAIL on cached bogus answer for +cd request (!860)
(regression since 4.1.0 release, in less common cases)

	prefill module: allow a different module-loading style (#506)

	validation: trim TTLs by RRSIG’s expiration and original TTL (#319, #504)

	NS choice algorithm: fix a regression since 4.0.0 (#497, !868)

	policy: special domains home.arpa. and local. get NXDOMAIN (!855)

Improvements

	add compatibility with (future) libknot 2.9

Knot Resolver 4.2.0 (2019-08-05)

Improvements

	queries without RD bit set are REFUSED by default (!838)

	support forwarding to multiple targets (!825)

Bugfixes

	tls_client: fix issue with TLS session resumption (#489)

	rebinding module: fix another false-positive assertion case (!851)

Module API changes

	kr_request::add_selected is now really put into answer,
instead of the “duplicate” ::additional field (#490)

Knot Resolver 4.1.0 (2019-07-10)

Security

	fix CVE-2019-10190: do not pass bogus negative answer to client (!827)

	fix CVE-2019-10191: do not cache negative answer with forged QNAME+QTYPE (!839)

Improvements

	new cache garbage collector is available and enabled by default (#257)
This improves cache efficiency on big installations.

	DNS-over-HTTPS: unknown HTTP parameters are ignored to improve compatibility
with non-standard clients (!832)

	DNS-over-HTTPS: answers include access-control-allow-origin: * (!823)
which allows JavaScript to use DoH endpoint.

	http module: support named AF_UNIX stream sockets (again)

	aggressive caching is disabled on minimal NSEC* ranges (!826)
This improves cache effectivity with DNSSEC black lies and also accidentally
works around bug in proofs-of-nonexistence from F5 BIG-IP load-balancers.

	aarch64 support, even kernels with ARM64_VA_BITS >= 48 (#216, !797)
This is done by working around a LuaJIT incompatibility. Please report bugs.

	lua tables for C modules are more strict by default, e.g. nsid.foo
will throw an error instead of returning nil (!797)

	systemd: basic watchdog is now available and enabled by default (#275)

Bugfixes

	TCP to upstream: fix unlikely case of sending out wrong message length (!816)

	http module: fix problems around maintenance of ephemeral certs (!819)

	http module: also send intermediate TLS certificate to clients,
if available and luaossl >= 20181207 (!819)

	send EDNS with SERVFAILs, e.g. on validation failures (#180, !827)

	prefill module: avoid crash on empty zone file (#474, !840)

	rebinding module: avoid excessive iteration on blocked attempts (!842)

	rebinding module: fix crash caused by race condition (!842)

	rebinding module: log each blocked query only in verbose mode (!842)

	cache: automatically clear stale reader locks (!844)

Module API changes

	lua modules may omit casting parameters of layer functions (!797)

Knot Resolver 4.0.0 (2019-04-18)

Incompatible changes

	see upgrading guide: https://knot-resolver.readthedocs.io/en/stable/upgrading.html

	configuration: trust_anchors aliases .file, .config() and .negative were removed (!788)

	configuration: trust_anchors.keyfile_default is no longer accessible (!788)

	daemon: -k/–keyfile and -K/–keyfile-ro options were removed

	meson build system is now used for builds (!771)

	build with embedded LMBD is no longer supported

	default modules dir location has changed

	DNSSEC is enabled by default

	upstream packages for Debian now require systemd

	libknot >= 2.8 is required

	net.list() output format changed (#448)

	net.listen() reports error when address-port pair is in use

	bind to DNS-over-TLS port by default (!792)

	stop versioning libkres library

	default port for web management and APIs changed to 8453

Improvements

	policy.TLS_FORWARD: if hostname is configured, send it on wire (!762)

	hints module: allow configuring the TTL and change default from 0 to 5s

	policy module: policy.rpz() will watch the file for changes by default

	packaging: lua cqueues added to default dependencies where available

	systemd: service is no longer auto-restarted on configuration errors

	always send DO+CD flags upstream, even in insecure zones (#153)

	cache.stats() output is completely new; see docs (!775)

	improve usability of table_print() (!790, !801)

	add DNS-over-HTTPS support (#280)

	docker image supports and exposes DNS-over-HTTPS

Bugfixes

	predict module: load stats module if config didn’t specify period (!755)

	trust_anchors: don’t do 5011-style updates on anchors from files
that were loaded as unmanaged trust anchors (!753)

	trust_anchors.add(): include these TAs in .summary() (!753)

	policy module: support ‘#’ for separating port numbers, for consistency

	fix startup on macOS+BSD when </dev/null and cqueues installed

	policy.RPZ: log problems from zone-file level of parser as well (#453)

	fix flushing of messages to logs in some cases (notably systemd) (!781)

	fix fallback when SERVFAIL or REFUSED is received from upstream (!784)

	fix crash when dealing with unknown TA key algorhitm (#449)

	go insecure due to algorithm support even if DNSKEY is NODATA (!798)

	fix mac addresses in the output of net.interfaces() command (!804)

	http module: fix too early renewal of ephemeral certificates (!808)

Module API changes

	kr_straddr_split() changed API a bit (compiler will catch that)

	C modules defining *_layer or *_props symbols need to change a bit
See the upgrading guide for details. It’s detected on module load.

Knot Resolver 3.2.1 (2019-01-10)

Bugfixes

	trust_anchors: respect validity time range during TA bootstrap (!748)

	fix TLS rehandshake handling (!739)

	make TLS_FORWARD compatible with GnuTLS 3.3 (!741)

	special thanks to Grigorii Demidov for his long-term work on Knot Resolver!

Improvements

	improve handling of timeouted outgoing TCP connections (!734)

	trust_anchors: check syntax of public keys in DNSKEY RRs (!748)

	validator: clarify message about bogus non-authoritative data (!735)

	dnssec validation failures contain more verbose reasoning (!735)

	new function trust_anchors.summary() describes state of DNSSEC TAs (!737),
and logs new state of trust anchors after start up and automatic changes

	trust anchors: refuse revoked DNSKEY even if specified explicitly,
and downgrade missing the SEP bit to a warning

Knot Resolver 3.2.0 (2018-12-17)

New features

	module edns_keepalive to implement server side of RFC 7828 (#408)

	module nsid to implement server side of RFC 5001 (#289)

	module bogus_log provides .frequent() table (!629, credit Ulrich Wisser)

	module stats collects flags from answer messages (!629, credit Ulrich Wisser)

	module view supports multiple rules with identical address/TSIG specification
and keeps trying rules until a “non-chain” action is executed (!678)

	module experimental_dot_auth implements an DNS-over-TLS to auth protocol
(!711, credit Manu Bretelle)

	net.bpf bindings allow advanced users to use eBPF socket filters

Bugfixes

	http module: only run prometheus in parent process if using –forks=N,
as the submodule collects metrics from all sub-processes as well.

	TLS fixes for corner cases (!700, !714, !716, !721, !728)

	fix build with -DNOVERBOSELOG (#424)

	policy.{FORWARD,TLS_FORWARD,STUB}: respect net.ipv{4,6} setting (!710)

	avoid SERVFAILs due to certain kind of NS dependency cycles, again
(#374) this time seen as ‘circular dependency’ in verbose logs

	policy and view modules do not overwrite result finished requests (!678)

Improvements

	Dockerfile: rework, basing on Debian instead of Alpine

	policy.{FORWARD,TLS_FORWARD,STUB}: give advantage to IPv6
when choosing whom to ask, just as for iteration

	use pseudo-randomness from gnutls instead of internal ISAAC (#233)

	tune the way we deal with non-responsive servers (!716, !723)

	documentation clarifies interaction between policy and view modules (!678, !730)

Module API changes

	new layer is added: answer_finalize

	kr_request keeps ::qsource.packet beyond the begin layer

	kr_request::qsource.tcp renamed to ::qsource.flags.tcp

	kr_request::has_tls renamed to ::qsource.flags.tls

	kr_zonecut_add(), kr_zonecut_del() and kr_nsrep_sort() changed parameters slightly

Knot Resolver 3.1.0 (2018-11-02)

Incompatible changes

	hints.use_nodata(true) by default; that’s what most users want

	libknot >= 2.7.2 is required

Improvements

	cache: handle out-of-space SIGBUS slightly better (#197)

	daemon: improve TCP timeout handling (!686)

Bugfixes

	cache.clear(‘name’): fix some edge cases in API (#401)

	fix error handling from TLS writes (!669)

	avoid SERVFAILs due to certain kind of NS dependency cycles (#374)

Knot Resolver 3.0.0 (2018-08-20)

Incompatible changes

	cache: fail lua operations if cache isn’t open yet (!639)
By default cache is opened after reading the configuration,
and older versions were silently ignoring cache operations.
Valid configuration must open cache using cache.open() or cache.size =
before executing cache operations like cache.clear().

	libknot >= 2.7.1 is required, which brings also larger API changes

	in case you wrote custom Lua modules, please consult
https://knot-resolver.readthedocs.io/en/latest/lib.html#incompatible-changes-since-3-0-0

	in case you wrote custom C modules, please see compile against
Knot DNS 2.7 and adjust your module according to messages from C compiler

	DNS cookie module (RFC 7873) is not available in this release,
it will be later reworked to reflect development in IEFT dnsop working group

	version module was permanently removed because it was not really used by users;
if you want to receive notifications abou new releases please subscribe to
https://lists.nic.cz/cgi-bin/mailman/listinfo/knot-resolver-announce

Bugfixes

	fix multi-process race condition in trust anchor maintenance (!643)

	ta_sentinel: also consider static trust anchors not managed via RFC 5011

Improvements

	reorder_RR() implementation is brought back

	bring in performace improvements provided by libknot 2.7

	cache.clear() has a new, more powerful API

	cache documentation was improved

	old name “Knot DNS Resolver” is replaced by unambiguous “Knot Resolver”
to prevent confusion with “Knot DNS” authoritative server

Knot Resolver 2.4.1 (2018-08-02)

Security

	fix CVE-2018-10920: Improper input validation bug in DNS resolver component
(security!7, security!9)

Bugfixes

	cache: fix TTL overflow in packet due to min_ttl (#388, security!8)

	TLS session resumption: avoid bad scheduling of rotation (#385)

	HTTP module: fix a regression in 2.4.0 which broke custom certs (!632)

	cache: NSEC3 negative cache even without NS record (#384)
This fixes lower hit rate in NSEC3 zones (since 2.4.0).

	minor TCP and TLS fixes (!623, !624, !626)

Knot Resolver 2.4.0 (2018-07-03)

Incompatible changes

	minimal libknot version is now 2.6.7 to pull in latest fixes (#366)

Security

	fix a rare case of zones incorrectly dowgraded to insecure status (!576)

New features

	TLS session resumption (RFC 5077), both server and client (!585, #105)
(disabled when compiling with gnutls < 3.5)

	TLS_FORWARD policy uses system CA certificate store by default (!568)

	aggressive caching for NSEC3 zones (!600)

	optional protection from DNS Rebinding attack (module rebinding, !608)

	module bogus_log to log DNSSEC bogus queries without verbose logging (!613)

Bugfixes

	prefill: fix ability to read certificate bundle (!578)

	avoid turning off qname minimization in some cases, e.g. co.uk. (#339)

	fix validation of explicit wildcard queries (#274)

	dns64 module: more properties from the RFC implemented (incl. bug #375)

Improvements

	systemd: multiple enabled kresd instances can now be started using kresd.target

	ta_sentinel: switch to version 14 of the RFC draft (!596)

	support for glibc systems with a non-Linux kernel (!588)

	support per-request variables for Lua modules (!533)

	support custom HTTP endpoints for Lua modules (!527)

Knot Resolver 2.3.0 (2018-04-23)

Security

	fix CVE-2018-1110: denial of service triggered by malformed DNS messages
(!550, !558, security!2, security!4)

	increase resilience against slow lorris attack (security!5)

New features

	new policy.REFUSE to reply REFUSED to clients

Bugfixes

	validation: fix SERVFAIL in case of CNAME to NXDOMAIN in a single zone (!538)

	validation: fix SERVFAIL for DS . query (!544)

	lib/resolve: don’t send unecessary queries to parent zone (!513)

	iterate: fix validation for zones where parent and child share NS (!543)

	TLS: improve error handling and documentation (!536, !555, !559)

Improvements

	prefill: new module to periodically import root zone into cache
(replacement for RFC 7706, !511)

	network_listen_fd: always create end point for supervisor supplied file descriptor

	use CPPFLAGS build environment variable if set (!547)

Knot Resolver 2.2.0 (2018-03-28)

New features

	cache server unavailability to prevent flooding unreachable servers
(Please note that caching algorithm needs further optimization
and will change in further versions but we need to gather operational
experience first.)

Bugfixes

	don’t magically -D_FORTIFY_SOURCE=2 in some cases

	allow large responses for outbound over TCP

	fix crash with RR sets with over 255 records

Knot Resolver 2.1.1 (2018-02-23)

Bugfixes

	when iterating, avoid unnecessary queries for NS in insecure parent.
This problem worsened in 2.0.0. (#246)

	prevent UDP packet leaks when using TLS forwarding

	fix the hints module also on some other systems, e.g. Gentoo.

Knot Resolver 2.1.0 (2018-02-16)

Incompatible changes

	stats: remove tracking of expiring records (predict uses another way)

	systemd: re-use a single kresd.socket and kresd-tls.socket

	ta_sentinel: implement protocol draft-ietf-dnsop-kskroll-sentinel-01
(our draft-ietf-dnsop-kskroll-sentinel-00 implementation had inverted logic)

	libknot: require version 2.6.4 or newer to get bugfixes for DNS-over-TLS

Bugfixes

	detect_time_jump module: don’t clear cache on suspend-resume (#284)

	stats module: fix stats.list() returning nothing, regressed in 2.0.0

	policy.TLS_FORWARD: refusal when configuring with multiple IPs (#306)

	cache: fix broken refresh of insecure records that were about to expire

	fix the hints module on some systems, e.g. Fedora (came back on 2.0.0)

	build with older gnutls (conditionally disable features)

	fix the predict module to work with insecure records & cleanup code

Knot Resolver 2.0.0 (2018-01-31)

Incompatible changes

	systemd: change unit files to allow running multiple instances,
deployments with single instance now must use kresd@1.service
instead of kresd.service; see kresd.systemd(7) for details

	systemd: the directory for cache is now /var/cache/knot-resolver

	unify default directory and user to knot-resolver

	directory with trust anchor file specified by -k option must be writeable

	policy module is now loaded by default to enforce RFC 6761;
see documentation for policy.PASS if you use locally-served DNS zones

	drop support for alternative cache backends memcached, redis,
and for Lua bindings for some specific cache operations

	REORDER_RR option is not implemented (temporarily)

New features

	aggressive caching of validated records (RFC 8198) for NSEC zones;
thanks to ICANN for sponsoring this work.

	forwarding over TLS, authenticated by SPKI pin or certificate.
policy.TLS_FORWARD pipelines queries out-of-order over shared TLS connection
Beware: Some resolvers do not support out-of-order query processing.
TLS forwarding to such resolvers will lead to slower resolution or failures.

	trust anchors: you may specify a read-only file via -K or –keyfile-ro

	trust anchors: at build-time you may set KEYFILE_DEFAULT (read-only)

	ta_sentinel module implements draft ietf-dnsop-kskroll-sentinel-00,
enabled by default

	serve_stale module is prototype, subject to change

	extended API for Lua modules

Bugfixes

	fix build on osx - regressed in 1.5.3 (different linker option name)

Knot Resolver 1.5.3 (2018-01-23)

Bugfixes

	fix the hints module on some systems, e.g. Fedora.
Symptom: undefined symbol: engine_hint_root_file

Knot Resolver 1.5.2 (2018-01-22)

Security

	fix CVE-2018-1000002: insufficient DNSSEC validation, allowing
attackers to deny existence of some data by forging packets.
Some combinations pointed out in RFC 6840 sections 4.1 and 4.3
were not taken into account.

Bugfixes

	memcached: fix fallout from module rename in 1.5.1

Knot Resolver 1.5.1 (2017-12-12)

Incompatible changes

	script supervisor.py was removed, please migrate to a real process manager

	module ketcd was renamed to etcd for consistency

	module kmemcached was renamed to memcached for consistency

Bugfixes

	fix SIGPIPE crashes (#271)

	tests: work around out-of-space for platforms with larger memory pages

	lua: fix mistakes in bindings affecting 1.4.0 and 1.5.0 (and 1.99.1-alpha),
potentially causing problems in dns64 and workarounds modules

	predict module: various fixes (!399)

Improvements

	add priming module to implement RFC 8109, enabled by default (#220)

	add modules helping with system time problems, enabled by default;
for details see documentation of detect_time_skew and detect_time_jump

Knot Resolver 1.5.0 (2017-11-02)

Bugfixes

	fix loading modules on Darwin

Improvements

	new module ta_signal_query supporting Signaling Trust Anchor Knowledge
using Keytag Query (RFC 8145 section 5); it is enabled by default

	attempt validation for more records but require it for fewer of them
(e.g. avoids SERVFAIL when server adds extra records but omits RRSIGs)

Knot Resolver 1.99.1-alpha (2017-10-26)

This is an experimental release meant for testing aggressive caching.
It contains some regressions and might (theoretically) be even vulnerable.
The current focus is to minimize queries into the root zone.

Improvements

	negative answers from validated NSEC (NXDOMAIN, NODATA)

	verbose log is very chatty around cache operations (maybe too much)

Regressions

	dropped support for alternative cache backends
and for some specific cache operations

	
	caching doesn’t yet work for various cases:

	
	
	negative answers without NSEC (i.e. with NSEC3 or insecure)

	
	+cd queries (needs other internal changes)

	positive wildcard answers

	
	spurious SERVFAIL on specific combinations of cached records, printing:

	<= bad keys, broken trust chain

	make check

	a few Deckard tests are broken, probably due to some problems above

	also unknown ones?

Knot Resolver 1.4.0 (2017-09-22)

Incompatible changes

	lua: query flag-sets are no longer represented as plain integers.
kres.query.* no longer works, and kr_query_t lost trivial methods
‘hasflag’ and ‘resolved’.
You can instead write code like qry.flags.NO_0X20 = true.

Bugfixes

	fix exiting one of multiple forks (#150)

	cache: change the way of using LMDB transactions. That in particular
fixes some cases of using too much space with multiple kresd forks (#240).

Improvements

	policy.suffix: update the aho-corasick code (#200)

	root hints are now loaded from a zonefile; exposed as hints.root_file().
You can override the path by defining ROOTHINTS during compilation.

	policy.FORWARD: work around resolvers adding unsigned NS records (#248)

	reduce unneeded records previously put into authority in wildcarded answers

Knot Resolver 1.3.3 (2017-08-09)

Security

	Fix a critical DNSSEC flaw. Signatures might be accepted as valid
even if the signed data was not in bailiwick of the DNSKEY used to
sign it, assuming the trust chain to that DNSKEY was valid.

Bugfixes

	iterate: skip RRSIGs with bad label count instead of immediate SERVFAIL

	utils: fix possible incorrect seeding of the random generator

	modules/http: fix compatibility with the Prometheus text format

Improvements

	policy: implement remaining special-use domain names from RFC6761 (#205),
and make these rules apply only if no other non-chain rule applies

Knot Resolver 1.3.2 (2017-07-28)

Security

	fix possible opportunities to use insecure data from cache as keys
for validation

Bugfixes

	daemon: check existence of config file even if rundir isn’t specified

	policy.FORWARD and STUB: use RTT tracking to choose servers (#125, #208)

	dns64: fix CNAME problems (#203) It still won’t work with policy.STUB.

	
	hints: better interpretation of hosts-like files (#204)

	also, error out if a bad entry is encountered in the file

	dnssec: handle unknown DNSKEY/DS algorithms (#210)

	predict: fix the module, broken since 1.2.0 (#154)

Improvements

	embedded LMDB fallback: update 0.9.18 -> 0.9.21

Knot Resolver 1.3.1 (2017-06-23)

Bugfixes

	modules/http: fix finding the static files (bug from 1.3.0)

	policy.FORWARD: fix some cases of CNAMEs obstructing search for zone cuts

Knot Resolver 1.3.0 (2017-06-13)

Security

	Refactor handling of AD flag and security status of resource records.
In some cases it was possible for secure domains to get cached as
insecure, even for a TLD, leading to disabled validation.
It also fixes answering with non-authoritative data about nameservers.

Improvements

	major feature: support for forwarding with validation (#112).
The old policy.FORWARD action now does that; the previous non-validating
mode is still available as policy.STUB except that also uses caching (#122).

	command line: specify ports via @ but still support # for compatibility

	policy: recognize 100.64.0.0/10 as local addresses

	layer/iterate: do retry repeatedly if REFUSED, as we can’t yet easily
retry with other NSs while avoiding retrying with those who REFUSED

	modules: allow changing the directory where modules are found,
and do not search the default library path anymore.

Bugfixes

	validate: fix insufficient caching for some cases (relatively rare)

	avoid putting “duplicate” record-sets into the answer (#198)

Knot Resolver 1.2.6 (2017-04-24)

Security

	dnssec: don’t set AD flag for NODATA answers if wildcard non-existence
is not guaranteed due to opt-out in NSEC3

Improvements

	layer/iterate: don’t retry repeatedly if REFUSED

Bugfixes

	lib/nsrep: revert some changes to NS reputation tracking that caused
severe problems to some users of 1.2.5 (#178 and #179)

	dnssec: fix verification of wildcarded non-singleton RRsets

	dnssec: allow wildcards located directly under the root

	layer/rrcache: avoid putting answer records into queries in some cases

Knot Resolver 1.2.5 (2017-04-05)

Security

	layer/validate: clear AD if closest encloser proof has opt-outed
NSEC3 (#169)

	layer/validate: check if NSEC3 records in wildcard expansion proof
has an opt-out

	dnssec/nsec: missed wildcard no-data answers validation has been
implemented

Improvements

	modules/dnstap: a DNSTAP support module
(Contributed by Vicky Shrestha)

	modules/workarounds: a module adding workarounds for known
DNS protocol violators

	layer/iterate: fix logging of glue addresses

	kr_bitcmp: allow bits=0 and consequently 0.0.0.0/0 matches in view
and renumber modules.

	modules/padding: Improve default padding of responses
(Contributed by Daniel Kahn Gillmor)

	New kresc client utility (experimental; don’t rely on the API yet)

Bugfixes

	trust anchors: Improve trust anchors storage format (#167)

	trust anchors: support non-root TAs, one domain per file

	policy.DENY: set AA flag and clear AD flag

	lib/resolve: avoid unnecessary DS queries

	lib/nsrep: don’t treat servers with NOIP4 + NOIP6 flags as timeouted

	layer/iterate: During packet classification (answer vs. referral)
don’t analyze AUTHORITY section in authoritative answer if ANSWER
section contains records that have been requested

Knot Resolver 1.2.4 (2017-03-09)

Security

	Knot Resolver 1.2.0 and higher could return AD flag for insecure
answer if the daemon received answer with invalid RRSIG several
times in a row.

Improvements

	modules/policy: allow QTRACE policy to be chained with other
policies

	hints.add_hosts(path): a new property

	module: document the API and simplify the code

	policy.MIRROR: support IPv6 link-local addresses

	policy.FORWARD: support IPv6 link-local addresses

	add net.outgoing_{v4,v6} to allow specifying address to use for
connections

Bugfixes

	layer/iterate: some improvements in cname chain unrolling

	layer/validate: fix duplicate records in AUTHORITY section in case
of WC expansion proof

	lua: do not truncate cache size to unsigned

	forwarding mode: correctly forward +cd flag

	fix a potential memory leak

	don’t treat answers that contain DS non-existance proof as insecure

	don’t store NSEC3 and their signatures in the cache

	layer/iterate: when processing delegations, check if qname is at or
below new authority

Knot Resolver 1.2.3 (2017-02-23)

Bugfixes

	Disable storing GLUE records into the cache even in the
(non-default) QUERY_PERMISSIVE mode

	iterate: skip answer RRs that don’t match the query

	layer/iterate: some additional processing for referrals

	lib/resolve: zonecut fetching error was fixed

Knot Resolver 1.2.2 (2017-02-10)

Bugfixes:

	Fix -k argument processing to avoid out-of-bounds memory accesses

	lib/resolve: fix zonecut fetching for explicit DS queries

	hints: more NULL checks

	Fix TA bootstrapping for multiple TAs in the IANA XML file

Testing:

	Update tests to run tests with and without QNAME minimization

Knot Resolver 1.2.1 (2017-02-01)

Security:

	Under certain conditions, a cached negative answer from a CD query
would be reused to construct response for non-CD queries, resulting
in Insecure status instead of Bogus. Only 1.2.0 release was affected.

Documentation

	Update the typo in the documentation: The query trace policy is
named policy.QTRACE (and not policy.TRACE)

Bugfixes:

	lua: make the map command check its arguments

Knot Resolver 1.2.0 (2017-01-24)

Security:

	In a policy.FORWARD() mode, the AD flag was being always set by mistake.
It is now cleared, as the policy.FORWARD() doesn’t do DNSSEC validation yet.

Improvements:

	The DNSSEC Validation has been refactored, fixing many resolving
failures.

	Add module version that checks for updates and CVEs periodically.

	Support RFC7830: EDNS(0) padding in responses over TLS.

	Support CD flag on incoming requests.

	hints module: previously /etc/hosts was loaded by default, but not anymore.
Users can now actually avoid loading any file.

	DNS over TLS now creates ephemeral certs.

	Configurable cache.{min,max}_tll option, with max_ttl defaulting to 6 days.

	Option to reorder RRs in the response.

	New policy.QTRACE policy to print packet contents

Bugfixes:

	Trust Anchor configuration is now more robust.

	Correctly answer NOTIMPL for meta-types and non-IN RR classes.

	Free TCP buffer on cancelled connection.

	Fix crash in hints module on empty hints file, and fix non-lowercase hints.

Miscellaneous:

	It now requires knot >= 2.3.1 to link successfully.

	The API+ABI for modules changed slightly.

	New LRU implementation.

Knot Resolver 1.1.1 (2016-08-24)

Bugfixes:

	Fix 0x20 randomization with retransmit

	Fix pass-through for the stub mode

	Fix the root hints IPv6 addresses

	Fix dst addr for retries over TCP

Improvements:

	Track RTT of all tried servers for faster retransmit

	DAF: Allow forwarding to custom port

	systemd: Read EnvironmentFile and user $KRESD_ARGS

	systemd: Update systemd units to be named after daemon

Knot Resolver 1.1.0 (2016-08-12)

Improvements:

	RFC7873 DNS Cookies

	RFC7858 DNS over TLS

	HTTP/2 web interface, RESTful API

	Metrics exported in Prometheus

	DNS firewall module

	Explicit CNAME target fetching in strict mode

	Query minimisation improvements

	Improved integration with systemd

Knot Resolver 1.0.0 (2016-05-30)

Initial release:

	The first initial release

Building from sources

Note

Latest up-to-date packages for various distribution can be obtained
from web https://knot-resolver.cz/download/.

Knot Resolver is written for UNIX-like systems using modern C standards.
Beware that some 64-bit systems with LuaJIT 2.1 may be affected by
a problem [https://github.com/LuaJIT/LuaJIT/blob/v2.1/doc/status.html#L100]
– Linux on x86_64 is unaffected but Linux on aarch64 is [https://gitlab.labs.nic.cz/knot/knot-resolver/issues/216].

$ git clone --recursive https://gitlab.labs.nic.cz/knot/knot-resolver.git

Dependencies

Note

This section lists basic requirements. Individual modules
might have additional build or runtime dependencies.

The following dependencies are needed to build and run Knot Resolver:

	Requirement

	Notes

	ninja

	build only

	meson >= 0.46

	build only 1

	C and C++ compiler

	build only 2

	pkg-config [https://www.freedesktop.org/wiki/Software/pkg-config/]

	build only 3

	libknot [https://gitlab.labs.nic.cz/knot/knot-dns] 2.8+

	Knot DNS libraries

	LuaJIT [http://luajit.org/luajit.html] 2.0+

	Embedded scripting language

	libuv [https://github.com/libuv/libuv] 1.7+

	Multiplatform I/O and services 4

	lmdb

	Memory-mapped database for cache

	GnuTLS

	TLS

There are also optional packages that enable specific functionality in Knot
Resolver:

	Optional

	Needed for

	Notes

	lua-http [https://luarocks.org/modules/daurnimator/http]

	modules/http

	HTTP/2 client/server for Lua.

	luasocket [https://luarocks.org/modules/luarocks/luasocket]

	trust anchors, modules/stats

	Sockets for Lua.

	luasec [https://luarocks.org/modules/brunoos/luasec]

	trust anchors

	TLS for Lua.

	cmocka [https://cmocka.org/]

	unit tests

	Unit testing framework.

	Doxygen [https://www.stack.nl/~dimitri/doxygen/manual/index.html]

	documentation

	Generating API documentation.

	Sphinx [http://sphinx-doc.org/] and sphinx_rtd_theme [https://pypi.python.org/pypi/sphinx_rtd_theme]

	documentation

	Building this
HTML/PDF documentation.

	breathe [https://github.com/michaeljones/breathe]

	documentation

	Exposing Doxygen API doc to Sphinx.

	libsystemd [https://www.freedesktop.org/wiki/Software/systemd/] >= 227

	daemon

	Systemd socket activation support.

	libprotobuf [https://developers.google.com/protocol-buffers/] 3.0+

	modules/dnstap

	Protocol Buffers support for
dnstap [http://dnstap.info/].

	libprotobuf-c [https://github.com/protobuf-c/protobuf-c/wiki] 1.0+

	modules/dnstap

	C bindings for Protobuf.

	libfstrm [https://github.com/farsightsec/fstrm] 0.2+

	modules/dnstap

	Frame Streams data transport
protocol.

	luacheck [http://luacheck.readthedocs.io]

	lint-lua

	Syntax and static analysis checker for Lua.

	clang-tidy [http://clang.llvm.org/extra/clang-tidy/index.html]

	lint-c

	Syntax and static analysis checker for C.

	luacov [https://keplerproject.github.io/luacov/]

	check-config

	Code coverage analysis for Lua modules.

	1

	If meson >= 0.46 isn’t available for your distro, check backports
repository or use python pip to install it.

	2

	Requires __attribute__((cleanup)) and -MMD -MP for
dependency file generation. We test GCC and Clang, and ICC is likely to work as well.

	3

	You can use variables <dependency>_CFLAGS and <dependency>_LIBS
to configure dependencies manually (i.e. libknot_CFLAGS and
libknot_LIBS).

	4

	libuv 1.7 brings SO_REUSEPORT support that is needed for multiple forks.
libuv < 1.7 can be still used, but only in single-process mode. Use
different method for load balancing.

Packaged dependencies

Note

Some build dependencies can be found in
home:CZ-NIC:knot-resolver-build [https://build.opensuse.org/project/show/home:CZ-NIC:knot-resolver-build].

On reasonably new systems most of the dependencies can be resolved from packages,
here’s an overview for several platforms.

	Debian/Ubuntu - Current stable doesn’t have new enough Meson
and libknot. Use repository above or build them yourself. Fresh list of dependencies can be found in Debian control file in our repo [https://gitlab.labs.nic.cz/knot/knot-resolver/blob/master/distro/deb/control], search for “Build-Depends”.

	CentOS/Fedora/RHEL/openSUSE - Fresh list of dependencies can be found in RPM spec file in our repo [https://gitlab.labs.nic.cz/knot/knot-resolver/blob/master/distro/rpm/knot-resolver.spec], search for “BuildRequires”.

	FreeBSD - when installing from ports, all dependencies will install
automatically, corresponding to the selected options.

	Mac OS X - the dependencies can be obtained from Homebrew formula [https://formulae.brew.sh/formula/knot-resolver].

Compilation

Note

Knot Resolver uses Meson Build system [https://mesonbuild.com/].
Shell snippets below should be sufficient for basic usage
but users unfamiliar with Meson Build might want to read introductory
article Using Meson [https://mesonbuild.com/Quick-guide.html].

Following example script will:

	create new build directory named build_dir

	configure installation path /tmp/kr

	enable static build (to allow installation to non-standard path)

	build Knot Resolver

	install it into the previously configured path

$ meson build_dir --prefix=/tmp/kr --default-library=static
$ ninja -C build_dir
$ ninja install -C build_dir

At this point you can execute the newly installed binary using path /tmp/kr/sbin/kresd.

Note

When compiling on OS X, creating a shared library is currently not
possible when using luajit package from Homebrew due to #37169 [https://github.com/Homebrew/homebrew-core/issues/37169].

Build options

It’s possible to change the compilation with build options. These are useful to
packagers or developers who wish to customize the daemon behaviour, run
extended test suites etc. By default, these are all set to sensible values.

For complete list of build options create a build directory and run:

$ meson build_dir
$ meson configure build_dir

To customize project build options, use -Doption=value when creating
a build directory:

$ meson build_dir -Ddoc=enabled

… or change options in an already existing build directory:

$ meson configure build_dir -Ddoc=enabled

Customizing compiler flags

If you’d like to use customize the build, see meson’s built-in options [https://mesonbuild.com/Builtin-options.html]. For hardening, see b_pie.

For complete control over the build flags, use --buildtype=plain and set
CFLAGS, LDFLAGS when creating the build directory with meson
command.

Tests

The following command runs all enabled tests. By default, only unit tests are enabled.

$ ninja -C build_dir
$ meson test -C build_dir

More comprehensive tests require you to install kresd into the configured
prefix before running the test suite. They also have to be explicitly enabled
by using either -Dconfig_tests=enabled for postinstall config tests, or
-Dextra_tests=enabled for all tests, including deckard tests. Please note
the latter also requires -Dsendmmsg=disabled.

$ meson configure build_dir -Dconfig_tests=enabled
$ ninja install -C build_dir
$ meson test -C build_dir

It’s also possible to run only specific test suite or a test.

$ meson test -C build_dir --help
$ meson test -C build_dir --list
$ meson test -C build_dir --no-suite postinstall
$ meson test -C build_dir integration.serve_stale

HTML Documentation

To check for documentation dependencies and allow its installation, use
-Ddoc=enabled. The documentation doesn’t build automatically. Instead,
target doc must be called explicitly.

$ meson build_dir -Ddoc=enabled
$ ninja -C build_dir doc

Tarball

Released tarballs are available from https://knot-resolver.cz/download/

To make a release tarball from git, use the follwing command. The

$ ninja -C build_dir dist

It’s also possible to make a development snapshot tarball:

$./scripts/make-dev-archive.sh

Packaging

Recommended build options for packagers:

	--buildtype=release for default flags (optimalization, asserts, …). For complete control over flags, use plain and see Customizing compiler flags.

	--prefix=/usr to customize
prefix, other directories can be set in a similar fashion, see meson setup
--help

	-Ddoc=enabled for offline html documentation (see HTML Documentation)

	-Dinstall_kresd_conf=enabled to install default config file

	-Dclient=enabled to force build of kresc

	-Dunit_tests=enabled to force build of unit tests

Systemd

It’s recommended to use the upstream system unit files. If any customizations
are required, drop-in files should be used, instead of patching/changing the
unit files themselves.

Depending on your systemd version, choose the appropriate build option:

	-Dsystemd_files=enabled (recommended) installs unit files with
systemd socket activation support. Requires systemd >=227.

	-Dsystemd_files=nosocket for systemd <227. Unit files won’t use
socket activation.

To support enabling services after boot, you must also link kresd.target to
multi-user.target.wants:

ln -s ../kresd.target /usr/lib/systemd/system/multi-user.target.wants/kresd.target

Trust anchors

If the target distro has externally managed (read-only) DNSSEC trust anchors
or root hints use this:

	-Dkeyfile_default=/usr/share/dns/root.key

	-Droot_hints=/usr/share/dns/root.hints

	-Dmanaged_ta=disabled

In case you want to have automatically managed DNSSEC trust anchors instead,
set -Dmanaged_ta=enabled and make sure both keyfile_default file and
its parent directories are writable by kresd process (after package installation!).

Docker image

Visit hub.docker.com/r/cznic/knot-resolver [https://hub.docker.com/r/cznic/knot-resolver/] for instructions how to run
the container.

For development, it’s possible to build the container directly from your git tree:

$ docker build -t knot-resolver .

Knot Resolver library

Requirements

	libknot [https://gitlab.labs.nic.cz/knot/knot-dns/tree/master/src/libknot] 2.0 (Knot DNS high-performance DNS library.)

For users

The library as described provides basic services for name resolution, which should cover the usage,
examples are in the resolve API documentation.

Tip

If you’re migrating from getaddrinfo(), see “synchronous” API, but the library offers iterative API as well to plug it into your event loop for example.

For developers

The resolution process starts with the functions in resolve.c, they are responsible for:

	reacting to state machine state (i.e. calling consume layers if we have an answer ready)

	interacting with the library user (i.e. asking caller for I/O, accepting queries)

	fetching assets needed by layers (i.e. zone cut)

This is the driver. The driver is not meant to know “how” the query resolves, but rather “when” to execute “what”.

[image: _images/resolution.png]
On the other side are layers. They are responsible for dissecting the packets and informing the driver about the results. For example, a produce layer generates query, a consume layer validates answer.

Tip

Layers are executed asynchronously by the driver. If you need some asset beforehand, you can signalize the driver using returning state or current query flags. For example, setting a flag AWAIT_CUT forces driver to fetch zone cut information before the packet is consumed; setting a RESOLVED flag makes it pop a query after the current set of layers is finished; returning FAIL state makes it fail current query.

Layers can also change course of resolution, for example by appending additional queries.

consume = function (state, req, answer)
 if answer:qtype() == kres.type.NS then
 local qry = req:push(answer:qname(), kres.type.SOA, kres.class.IN)
 qry.flags.AWAIT_CUT = true
 end
 return state
end

This doesn’t block currently processed query, and the newly created sub-request will start as soon as driver finishes processing current. In some cases you might need to issue sub-request and process it before continuing with the current, i.e. validator may need a DNSKEY before it can validate signatures. In this case, layers can yield and resume afterwards.

consume = function (state, req, answer)
 if state == kres.YIELD then
 print('continuing yielded layer')
 return kres.DONE
 else
 if answer:qtype() == kres.type.NS then
 local qry = req:push(answer:qname(), kres.type.SOA, kres.class.IN)
 qry.flags.AWAIT_CUT = true
 print('planned SOA query, yielding')
 return kres.YIELD
 end
 return state
 end
end

The YIELD state is a bit special. When a layer returns it, it interrupts current walk through the layers. When the layer receives it,
it means that it yielded before and now it is resumed. This is useful in a situation where you need a sub-request to determine whether current answer is valid or not.

Writing layers

Warning

FIXME: this dev-docs section is outdated! Better see comments in files instead, for now.

The resolver library leverages the processing API from the libknot to separate packet processing code into layers.

Note

This is only crash-course in the library internals, see the resolver library documentation for the complete overview of the services.

The library offers following services:

	Cache - MVCC cache interface for retrieving/storing resource records.

	Resolution plan - Query resolution plan, a list of partial queries (with hierarchy) sent in order to satisfy original query. This contains information about the queries, nameserver choice, timing information, answer and its class.

	Nameservers - Reputation database of nameservers, this serves as an aid for nameserver choice.

A processing layer is going to be called by the query resolution driver for each query,
so you’re going to work with struct kr_request as your per-query context.
This structure contains pointers to resolution context, resolution plan and also the final answer.

int consume(kr_layer_t *ctx, knot_pkt_t *pkt)
{
 struct kr_request *req = ctx->req;
 struct kr_query *qry = req->current_query;
}

This is only passive processing of the incoming answer. If you want to change the course of resolution, say satisfy a query from a local cache before the library issues a query to the nameserver, you can use states (see the Static hints for example).

int produce(kr_layer_t *ctx, knot_pkt_t *pkt)
{
 struct kr_request *req = ctx->req;
 struct kr_query *qry = req->current_query;

 /* Query can be satisfied locally. */
 if (can_satisfy(qry)) {
 /* This flag makes the resolver move the query
 * to the "resolved" list. */
 qry->flags.RESOLVED = true;
 return KR_STATE_DONE;
 }

 /* Pass-through. */
 return ctx->state;
}

It is possible to not only act during the query resolution, but also to view the complete resolution plan afterwards. This is useful for analysis-type tasks, or “per answer” hooks.

int finish(kr_layer_t *ctx)
{
 struct kr_request *req = ctx->req;
 struct kr_rplan *rplan = req->rplan;

 /* Print the query sequence with start time. */
 char qname_str[KNOT_DNAME_MAXLEN];
 struct kr_query *qry = NULL
 WALK_LIST(qry, rplan->resolved) {
 knot_dname_to_str(qname_str, qry->sname, sizeof(qname_str));
 printf("%s at %u\n", qname_str, qry->timestamp);
 }

 return ctx->state;
}

APIs in Lua

The APIs in Lua world try to mirror the C APIs using LuaJIT FFI, with several differences and enhancements.
There is not comprehensive guide on the API yet, but you can have a look at the bindings [https://gitlab.labs.nic.cz/knot/knot-resolver/blob/master/daemon/lua/kres.lua] file.

Elementary types and constants

	States are directly in kres table, e.g. kres.YIELD, kres.CONSUME, kres.PRODUCE, kres.DONE, kres.FAIL.

	DNS classes are in kres.class table, e.g. kres.class.IN for Internet class.

	DNS types are in kres.type table, e.g. kres.type.AAAA for AAAA type.

	DNS rcodes types are in kres.rcode table, e.g. kres.rcode.NOERROR.

	Packet sections (QUESTION, ANSWER, AUTHORITY, ADDITIONAL) are in the kres.section table.

Working with domain names

The internal API usually works with domain names in label format, you can convert between text and wire freely.

local dname = kres.str2dname('business.se')
local strname = kres.dname2str(dname)

Working with resource records

Resource records are stored as tables.

local rr = { owner = kres.str2dname('owner'),
 ttl = 0,
 class = kres.class.IN,
 type = kres.type.CNAME,
 rdata = kres.str2dname('someplace') }
print(kres.rr2str(rr))

RRSets in packet can be accessed using FFI, you can easily fetch single records.

local rrset = { ... }
local rr = rrset:get(0) -- Return first RR
print(kres.dname2str(rr:owner()))
print(rr:ttl())
print(kres.rr2str(rr))

Working with packets

Packet is the data structure that you’re going to see in layers very often. They consists of a header, and four sections: QUESTION, ANSWER, AUTHORITY, ADDITIONAL. The first section is special, as it contains the query name, type, and class; the rest of the sections contain RRSets.

First you need to convert it to a type known to FFI and check basic properties. Let’s start with a snippet of a consume layer.

consume = function (state, req, pkt)
 print('rcode:', pkt:rcode())
 print('query:', kres.dname2str(pkt:qname()), pkt:qclass(), pkt:qtype())
 if pkt:rcode() ~= kres.rcode.NOERROR then
 print('error response')
 end
end

You can enumerate records in the sections.

local records = pkt:section(kres.section.ANSWER)
for i = 1, #records do
 local rr = records[i]
 if rr.type == kres.type.AAAA then
 print(kres.rr2str(rr))
 end
end

During produce or begin, you might want to want to write to packet. Keep in mind that you have to write packet sections in sequence,
e.g. you can’t write to ANSWER after writing AUTHORITY, it’s like stages where you can’t go back.

pkt:rcode(kres.rcode.NXDOMAIN)
-- Clear answer and write QUESTION
pkt:recycle()
pkt:question('\7blocked', kres.class.IN, kres.type.SOA)
-- Start writing data
pkt:begin(kres.section.ANSWER)
-- Nothing in answer
pkt:begin(kres.section.AUTHORITY)
local soa = { owner = '\7blocked', ttl = 900, class = kres.class.IN, type = kres.type.SOA, rdata = '...' }
pkt:put(soa.owner, soa.ttl, soa.class, soa.type, soa.rdata)

Working with requests

The request holds information about currently processed query, enabled options, cache, and other extra data.
You primarily need to retrieve currently processed query.

consume = function (state, req, pkt)
 print(req.options)
 print(req.state)

 -- Print information about current query
 local current = req:current()
 print(kres.dname2str(current.owner))
 print(current.stype, current.sclass, current.id, current.flags)
end

In layers that either begin or finalize, you can walk the list of resolved queries.

local last = req:resolved()
print(last.stype)

As described in the layers, you can not only retrieve information about current query, but also push new ones or pop old ones.

-- Push new query
local qry = req:push(pkt:qname(), kres.type.SOA, kres.class.IN)
qry.flags.AWAIT_CUT = true

-- Pop the query, this will erase it from resolution plan
req:pop(qry)

Significant Lua API changes

Incompatible changes since 3.0.0

In the main kres.* lua binding, there was only change in struct knot_rrset_t:

	constructor now accepts TTL as additional parameter (defaulting to zero)

	add_rdata() doesn’t accept TTL anymore (and will throw an error if passed)

In case you used knot_* functions and structures bound to lua:

	knot_dname_is_sub(a, b): knot_dname_in_bailiwick(a, b) > 0

	knot_rdata_rdlen(): knot_rdataset_at().len

	knot_rdata_data(): knot_rdataset_at().data

	knot_rdata_array_size(): offsetof(struct knot_data_t, data) + knot_rdataset_at().len

	struct knot_rdataset: field names were renamed to .count and .rdata

	some functions got inlined from headers, but you can use their kr_* clones:
kr_rrsig_sig_inception(), kr_rrsig_sig_expiration(), kr_rrsig_type_covered().
Note that these functions now accept knot_rdata_t* instead of a pair
knot_rdataset_t* and size_t - you can use knot_rdataset_at() for that.

	knot_rrset_add_rdata() doesn’t take TTL parameter anymore

	knot_rrset_init_empty() was inlined, but in lua you can use the constructor

	knot_rrset_ttl() was inlined, but in lua you can use :ttl() method instead

	knot_pkt_qname(), _qtype(), _qclass(), _rr(), _section() were inlined,
but in lua you can use methods instead, e.g. myPacket:qname()

	knot_pkt_free() takes knot_pkt_t* instead of knot_pkt_t**, but from lua
you probably didn’t want to use that; constructor ensures garbage collection.

API reference

	Name resolution

	Cache

	Nameservers

	Modules

	Utilities

	Generics library

Name resolution

The API provides an API providing a “consumer-producer”-like interface to enable user to plug it into existing event loop or I/O code.

Example usage of the iterative API:

// Create request and its memory pool
struct kr_request req = {
 .pool = {
 .ctx = mp_new (4096),
 .alloc = (mm_alloc_t) mp_alloc
 }
};

// Setup and provide input query
int state = kr_resolve_begin(&req, ctx, final_answer);
state = kr_resolve_consume(&req, query);

// Generate answer
while (state == KR_STATE_PRODUCE) {

 // Additional query generate, do the I/O and pass back answer
 state = kr_resolve_produce(&req, &addr, &type, query);
 while (state == KR_STATE_CONSUME) {
 int ret = sendrecv(addr, proto, query, resp);

 // If I/O fails, make "resp" empty
 state = kr_resolve_consume(&request, addr, resp);
 knot_pkt_clear(resp);
 }
 knot_pkt_clear(query);
}

// "state" is either DONE or FAIL
kr_resolve_finish(&request, state);

Defines

	
kr_request_selected(req)

	Initializer for an array of *_selected.

Enums

	
kr_rank

	RRset rank - for cache and ranked_rr_*.

The rank meaning consists of one independent flag - KR_RANK_AUTH, and the rest have meaning of values where only one can hold at any time. You can use one of the enums as a safe initial value, optionally | KR_RANK_AUTH; otherwise it’s best to manipulate ranks via the kr_rank_* functions.

See also:

https://tools.ietf.org/html/rfc2181#section-5.4.1 https://tools.ietf.org/html/rfc4035#section-4.3
	Note

	The representation is complicated by restrictions on integer comparison:
	AUTH must be > than !AUTH

	AUTH INSECURE must be > than AUTH (because it attempted validation)

	!AUTH SECURE must be > than AUTH (because it’s valid)

Values:

	
0

	Did not attempt to validate.

It’s assumed compulsory to validate (or prove insecure).

	
KR_RANK_OMIT

	Do not attempt to validate.

(And don’t consider it a validation failure.)

	
KR_RANK_TRY

	Attempt to validate, but failures are non-fatal.

	
4

	Unable to determine whether it should be secure.

	
KR_RANK_BOGUS

	Ought to be secure but isn’t.

	
KR_RANK_MISMATCH

	

	
KR_RANK_MISSING

	Unable to obtain a good signature.

	
8

	Proven to be insecure, i.e.

we have a chain of trust from TAs that cryptographically denies the possibility of existence of a positive chain of trust from the TAs to the record.

	
16

	Authoritative data flag; the chain of authority was “verified”.

Even if not set, only in-bailiwick stuff is acceptable, i.e. almost authoritative (example: mandatory glue and its NS RR).

	
32

	Verified whole chain of trust from the closest TA.

Functions

	
bool kr_rank_check(uint8_t rank)

	Check that a rank value is valid.

Meant for assertions.

	
static bool kr_rank_test(uint8_t rank, uint8_t kr_flag)

	Test the presence of any flag/state in a rank, i.e.

including KR_RANK_AUTH.

	
static void kr_rank_set(uint8_t * rank, uint8_t kr_flag)

	Set the rank state.

The _AUTH flag is kept as it was.

	
KR_EXPORT int kr_resolve_begin(struct kr_request * request, struct kr_context * ctx, knot_pkt_t * answer)

	Begin name resolution.

	Note

	Expects a request to have an initialized mempool, the “answer” packet will be kept during the resolution and will contain the final answer at the end.

	Return

	CONSUME (expecting query)

	Parameters

	
	request: request state with initialized mempool

	ctx: resolution context

	answer: allocated packet for final answer

	
KR_EXPORT int kr_resolve_consume(struct kr_request * request, const struct sockaddr * src, knot_pkt_t * packet)

	Consume input packet (may be either first query or answer to query originated from kr_resolve_produce())

	Note

	If the I/O fails, provide an empty or NULL packet, this will make iterator recognize nameserver failure.

	Return

	any state

	Parameters

	
	request: request state (awaiting input)

	src: [in] packet source address

	packet: [in] input packet

	
KR_EXPORT int kr_resolve_produce(struct kr_request * request, struct sockaddr ** dst, int * type, knot_pkt_t * packet)

	Produce either next additional query or finish.

If the CONSUME is returned then dst, type and packet will be filled with appropriate values and caller is responsible to send them and receive answer. If it returns any other state, then content of the variables is undefined.

	Return

	any state

	Parameters

	
	request: request state (in PRODUCE state)

	dst: [out] possible address of the next nameserver

	type: [out] possible used socket type (SOCK_STREAM, SOCK_DGRAM)

	packet: [out] packet to be filled with additional query

	
KR_EXPORT int kr_resolve_checkout(struct kr_request * request, const struct sockaddr * src, struct sockaddr * dst, int type, knot_pkt_t * packet)

	Finalises the outbound query packet with the knowledge of the IP addresses.

	Note

	The function must be called before actual sending of the request packet.

	Return

	kr_ok() or error code

	Parameters

	
	request: request state (in PRODUCE state)

	src: address from which the query is going to be sent

	dst: address of the name server

	type: used socket type (SOCK_STREAM, SOCK_DGRAM)

	packet: [in,out] query packet to be finalised

	
KR_EXPORT int kr_resolve_finish(struct kr_request * request, int state)

	Finish resolution and commit results if the state is DONE.

	Note

	The structures will be deinitialized, but the assigned memory pool is not going to be destroyed, as it’s owned by caller.

	Return

	DONE

	Parameters

	
	request: request state

	state: either DONE or FAIL state (to be assigned to request->state)

	
KR_EXPORT KR_PURE struct kr_rplan* kr_resolve_plan(struct kr_request * request)

	Return resolution plan.

	Return

	pointer to rplan

	Parameters

	
	request: request state

	
KR_EXPORT KR_PURE knot_mm_t* kr_resolve_pool(struct kr_request * request)

	Return memory pool associated with request.

	Return

	mempool

	Parameters

	
	request: request state

	
struct kr_context

	#include <resolve.h>Name resolution context.

Resolution context provides basic services like cache, configuration and options.

	Note

	This structure is persistent between name resolutions and may be shared between threads.

Public Members

	
struct kr_qflags options

	

	
knot_rrset_t* opt_rr

	

	
map_t trust_anchors

	

	
map_t negative_anchors

	

	
struct kr_zonecut root_hints

	

	
struct kr_cache cache

	

	
kr_nsrep_rtt_lru_t* cache_rtt

	

	
unsigned cache_rtt_tout_retry_interval

	

	
kr_nsrep_lru_t* cache_rep

	

	
module_array_t* modules

	

	
struct kr_cookie_ctx cookie_ctx

	

	
kr_cookie_lru_t* cache_cookie

	

	
int32_t tls_padding

	See net.tls_padding in ../daemon/README.rst -1 is “true” (default policy), 0 is “false” (no padding)

	
knot_mm_t* pool

	

	
struct kr_request_qsource_flags

	
Public Members

	
bool tcp

	true if the request is on TCP (or TLS); only meaningful if (dst_addr).

	
bool tls

	true if the request is on TLS; only meaningful if (dst_addr).

	
bool http

	true if the request is on HTTP; only meaningful if (dst_addr).

	
struct kr_request

	#include <resolve.h>Name resolution request.

Keeps information about current query processing between calls to processing APIs, i.e. current resolved query, resolution plan, … Use this instead of the simple interface if you want to implement multiplexing or custom I/O.

	Note

	All data for this request must be allocated from the given pool.

Public Members

	
struct kr_context* ctx

	

	
knot_pkt_t* answer

	

	
struct kr_query* current_query

	Current evaluated query.

	
const struct sockaddr* addr

	Address that originated the request.

Current upstream address.

NULL for internal origin.

	
const struct sockaddr* dst_addr

	Address that accepted the request.

NULL for internal origin.

	
const knot_pkt_t* packet

	

	
struct kr_request_qsource_flags flags

	See definition above.

	
size_t size

	query packet size

	
struct kr_request::@6 qsource

	

	
unsigned rtt

	Current upstream RTT.

	
struct kr_request::@7 upstream

	Upstream information, valid only in consume() phase.

	
struct kr_qflags options

	

	
int state

	

	
ranked_rr_array_t answ_selected

	

	
ranked_rr_array_t auth_selected

	

	
ranked_rr_array_t add_selected

	

	
bool answ_validated

	internal to validator; beware of caching, etc.

	
bool auth_validated

	see answ_validated ^^ ; TODO

	
uint8_t rank

	Overall rank for the request.

Values from kr_rank, currently just KR_RANK_SECURE and _INITIAL. Only read this in finish phase and after validator, please. Meaning of _SECURE: all RRs in answer+authority are _SECURE, including any negative results implied (NXDOMAIN, NODATA).

	
struct kr_rplan rplan

	

	
trace_log_f trace_log

	Logging tracepoint.

	
trace_callback_f trace_finish

	Request finish tracepoint.

	
int vars_ref

	Reference to per-request variable table.

LUA_NOREF if not set.

	
knot_mm_t pool

	

	
unsigned int uid

	

Typedefs

	
typedef int32_t(* kr_stale_cb)(int32_t ttl, const knot_dname_t *owner, uint16_t type, const struct kr_query *qry)

	Callback for serve-stale decisions.

	Return

	the adjusted TTL (typically 1) or < 0.

	Parameters

	
	ttl: the expired TTL (i.e. it’s < 0)

Functions

	
KR_EXPORT void kr_qflags_set(struct kr_qflags * fl1, struct kr_qflags fl2)

	Combine flags together.

This means set union for simple flags.

	
KR_EXPORT void kr_qflags_clear(struct kr_qflags * fl1, struct kr_qflags fl2)

	Remove flags.

This means set-theoretic difference.

	
KR_EXPORT int kr_rplan_init(struct kr_rplan * rplan, struct kr_request * request, knot_mm_t * pool)

	Initialize resolution plan (empty).

	Parameters

	
	rplan: plan instance

	request: resolution request

	pool: ephemeral memory pool for whole resolution

	
KR_EXPORT void kr_rplan_deinit(struct kr_rplan * rplan)

	Deinitialize resolution plan, aborting any uncommited transactions.

	Parameters

	
	rplan: plan instance

	
KR_EXPORT KR_PURE bool kr_rplan_empty(struct kr_rplan * rplan)

	Return true if the resolution plan is empty (i.e.

finished or initialized)
	Return

	true or false

	Parameters

	
	rplan: plan instance

	
KR_EXPORT struct kr_query* kr_rplan_push_empty(struct kr_rplan * rplan, struct kr_query * parent)

	Push empty query to the top of the resolution plan.

	Note

	This query serves as a cookie query only.

	Return

	query instance or NULL

	Parameters

	
	rplan: plan instance

	parent: query parent (or NULL)

	
KR_EXPORT struct kr_query* kr_rplan_push(struct kr_rplan * rplan, struct kr_query * parent, const knot_dname_t * name, uint16_t cls, uint16_t type)

	Push a query to the top of the resolution plan.

	Note

	This means that this query takes precedence before all pending queries.

	Return

	query instance or NULL

	Parameters

	
	rplan: plan instance

	parent: query parent (or NULL)

	name: resolved name

	cls: resolved class

	type: resolved type

	
KR_EXPORT int kr_rplan_pop(struct kr_rplan * rplan, struct kr_query * qry)

	Pop existing query from the resolution plan.

	Note

	Popped queries are not discarded, but moved to the resolved list.

	Return

	0 or an error

	Parameters

	
	rplan: plan instance

	qry: resolved query

	
KR_EXPORT KR_PURE bool kr_rplan_satisfies(struct kr_query * closure, const knot_dname_t * name, uint16_t cls, uint16_t type)

	Return true if resolution chain satisfies given query.

	
KR_EXPORT KR_PURE struct kr_query* kr_rplan_resolved(struct kr_rplan * rplan)

	Return last resolved query.

	
KR_EXPORT KR_PURE struct kr_query* kr_rplan_last(struct kr_rplan * rplan)

	Return last query (either currently being solved or last resolved).

This is necessary to retrieve the last query in case of resolution failures (e.g. time limit reached).

	
KR_EXPORT KR_PURE struct kr_query* kr_rplan_find_resolved(struct kr_rplan * rplan, struct kr_query * parent, const knot_dname_t * name, uint16_t cls, uint16_t type)

	Check if a given query already resolved.

	Return

	query instance or NULL

	Parameters

	
	rplan: plan instance

	parent: query parent (or NULL)

	name: resolved name

	cls: resolved class

	type: resolved type

	
struct kr_qflags

	#include <rplan.h>Query flags.

Public Members

	
bool NO_MINIMIZE

	Don’t minimize QNAME.

	
bool NO_THROTTLE

	No query/slow NS throttling.

	
bool NO_IPV6

	Disable IPv6.

	
bool NO_IPV4

	Disable IPv4.

	
bool TCP

	Use TCP for this query.

	
bool RESOLVED

	Query is resolved.

Note that kr_query gets RESOLVED before following a CNAME chain; see .CNAME.

	
bool AWAIT_IPV4

	Query is waiting for A address.

	
bool AWAIT_IPV6

	Query is waiting for AAAA address.

	
bool AWAIT_CUT

	Query is waiting for zone cut lookup.

	
bool SAFEMODE

	Don’t use fancy stuff (EDNS, 0x20, …)

	
bool CACHED

	Query response is cached.

	
bool NO_CACHE

	No cache for lookup; exception: finding NSs and subqueries.

	
bool EXPIRING

	Query response is cached, but expiring.

	
bool ALLOW_LOCAL

	Allow queries to local or private address ranges.

	
bool DNSSEC_WANT

	Want DNSSEC secured answer; exception: +cd, i.e.

knot_wire_set_cd(request->answer->wire).

	
bool DNSSEC_BOGUS

	Query response is DNSSEC bogus.

	
bool DNSSEC_INSECURE

	Query response is DNSSEC insecure.

	
bool DNSSEC_CD

	Instruction to set CD bit in request.

	
bool STUB

	Stub resolution, accept received answer as solved.

	
bool ALWAYS_CUT

	Always recover zone cut (even if cached).

	
bool DNSSEC_WEXPAND

	Query response has wildcard expansion.

	
bool PERMISSIVE

	Permissive resolver mode.

	
bool STRICT

	Strict resolver mode.

	
bool BADCOOKIE_AGAIN

	Query again because bad cookie returned.

	
bool CNAME

	Query response contains CNAME in answer section.

	
bool REORDER_RR

	Reorder cached RRs.

	
bool TRACE

	Also log answers if verbose.

	
bool NO_0X20

	Disable query case randomization .

	
bool DNSSEC_NODS

	DS non-existance is proven.

	
bool DNSSEC_OPTOUT

	Closest encloser proof has optout.

	
bool NONAUTH

	Non-authoritative in-bailiwick records are enough.

TODO: utilize this also outside cache.

	
bool FORWARD

	Forward all queries to upstream; validate answers.

	
bool DNS64_MARK

	Internal mark for dns64 module.

	
bool CACHE_TRIED

	Internal to cache module.

	
bool NO_NS_FOUND

	No valid NS found during last PRODUCE stage.

	
bool PKT_IS_SANE

	Set by iterator in consume phase to indicate whether some basic aspects of the packet are OK, e.g.

QNAME.

	
struct kr_query

	#include <rplan.h>Single query representation.

Public Members

	
struct kr_query* parent

	

	
knot_dname_t* sname

	The name to resolve - lower-cased, uncompressed.

	
uint16_t stype

	

	
uint16_t sclass

	

	
uint16_t id

	

	
uint16_t reorder

	Seed to reorder (cached) RRs in answer or zero.

	
struct kr_qflags flags forward_flags

	

	
uint32_t secret

	

	
uint32_t uid

	Query iteration number, unique within the kr_rplan.

	
uint64_t creation_time_mono

	

	
uint64_t timestamp_mono

	Time of query created or time of query to upstream resolver (milliseconds).

	
struct timeval timestamp

	Real time for TTL+DNSSEC checks (.tv_sec only).

	
struct kr_zonecut zone_cut

	

	
struct kr_layer_pickle* deferred

	

	
struct kr_query* cname_parent

	Pointer to the query that originated this one because of following a CNAME (or NULL).

	
struct kr_request* request

	Parent resolution request.

	
kr_stale_cb stale_cb

	See the type.

	
struct kr_nsrep ns

	

	
struct kr_rplan

	#include <rplan.h>Query resolution plan structure.

The structure most importantly holds the original query, answer and the list of pending queries required to resolve the original query. It also keeps a notion of current zone cut.

Public Members

	
kr_qarray_t pending

	List of pending queries.

Beware: order is significant ATM, as the last is the next one to solve, and they may be inter-dependent.

	
kr_qarray_t resolved

	List of resolved queries.

	
struct kr_request* request

	Parent resolution request.

	
knot_mm_t* pool

	Temporary memory pool.

	
uint32_t next_uid

	Next value for kr_query::uid (incremental).

Cache

Functions

	
int cache_peek(kr_layer_t * ctx, knot_pkt_t * pkt)

	

	
int cache_stash(kr_layer_t * ctx, knot_pkt_t * pkt)

	

	
KR_EXPORT int kr_cache_open(struct kr_cache * cache, const struct kr_cdb_api * api, struct kr_cdb_opts * opts, knot_mm_t * mm)

	Open/create cache with provided storage options.

	Return

	0 or an error code

	Parameters

	
	cache: cache structure to be initialized

	api: storage engine API

	opts: storage-specific options (may be NULL for default)

	mm: memory context.

	
KR_EXPORT void kr_cache_close(struct kr_cache * cache)

	Close persistent cache.

	Note

	This doesn’t clear the data, just closes the connection to the database.

	Parameters

	
	cache: structure

	
KR_EXPORT int kr_cache_commit(struct kr_cache * cache)

	Run after a row of operations to release transaction/lock if needed.

	
static bool kr_cache_is_open(struct kr_cache * cache)

	Return true if cache is open and enabled.

	
static void kr_cache_make_checkpoint(struct kr_cache * cache)

	(Re)set the time pair to the current values.

	
KR_EXPORT int kr_cache_insert_rr(struct kr_cache * cache, const knot_rrset_t * rr, const knot_rrset_t * rrsig, uint8_t rank, uint32_t timestamp)

	Insert RRSet into cache, replacing any existing data.

	Return

	0 or an errcode

	Parameters

	
	cache: cache structure

	rr: inserted RRSet

	rrsig: RRSIG for inserted RRSet (optional)

	rank: rank of the data

	timestamp: current time

	
KR_EXPORT int kr_cache_clear(struct kr_cache * cache)

	Clear all items from the cache.

	Return

	0 or an errcode

	Parameters

	
	cache: cache structure

	
KR_EXPORT int kr_cache_peek_exact(struct kr_cache * cache, const knot_dname_t * name, uint16_t type, struct kr_cache_p * peek)

	

	
KR_EXPORT int32_t kr_cache_ttl(const struct kr_cache_p * peek, const struct kr_query * qry, const knot_dname_t * name, uint16_t type)

	

	
KR_EXPORT int kr_cache_materialize(knot_rdataset_t * dst, const struct kr_cache_p * ref, knot_mm_t * pool)

	

	
KR_EXPORT int kr_cache_remove(struct kr_cache * cache, const knot_dname_t * name, uint16_t type)

	Remove an entry from cache.

	Return

	number of deleted records, or negative error code

	Note

	only “exact hits” are considered ATM, and some other information may be removed alongside.

	Parameters

	
	cache: cache structure

	name: dname

	type: rr type

	
KR_EXPORT int kr_cache_match(struct kr_cache * cache, const knot_dname_t * name, bool exact_name, knot_db_val_t keyval[][2], int maxcount)

	Get keys matching a dname lf prefix.

	Return

	result count or an errcode

	Note

	the cache keys are matched by prefix, i.e. it very much depends on their structure; CACHE_KEY_DEF.

	Parameters

	
	cache: cache structure

	name: dname

	exact_name: whether to only consider exact name matches

	keyval: matched key-value pairs

	maxcount: limit on the number of returned key-value pairs

	
KR_EXPORT int kr_cache_remove_subtree(struct kr_cache * cache, const knot_dname_t * name, bool exact_name, int maxcount)

	Remove a subtree in cache.

It’s like _match but removing them instead of returning.
	Return

	number of deleted entries or an errcode

	
KR_EXPORT int kr_cache_closest_apex(struct kr_cache * cache, const knot_dname_t * name, bool is_DS, knot_dname_t ** apex)

	Find the closest cached zone apex for a name (in cache).

	Return

	the number of labels to remove from the name, or negative error code

	Note

	timestamp is found by a syscall, and stale-serving is not considered

	Parameters

	
	is_DS: start searching one name higher

	
KR_EXPORT int kr_unpack_cache_key(knot_db_val_t key, knot_dname_t * buf, uint16_t * type)

	Unpack dname and type from db key.

	Return

	length of dname or an errcode

	Note

	only “exact hits” are considered ATM, moreover xNAME records are “hidden” as NS. (see comments in struct entry_h)

	Parameters

	
	key: db key representation

	buf: output buffer of domain name in dname format

	type: output for type

Variables

	
const size_t PKT_SIZE_NOWIRE = -1

	When knot_pkt is passed from cache without ->wire, this is the ->size.

	
KR_EXPORT const char* kr_cache_emergency_file_to_remove

	Path to cache file to remove on critical out-of-space error.

(do NOT modify it)

	
struct kr_cache

	#include <api.h>Cache structure, keeps API, instance and metadata.

Public Members

	
knot_db_t* db

	Storage instance.

	
const struct kr_cdb_api* api

	Storage engine.

	
struct kr_cdb_stats stats

	

	
uint32_t ttl_min

	

	
uint32_t ttl_max

	TTL limits.

	
struct timeval checkpoint_walltime

	Wall time on the last check-point.

	
uint64_t checkpoint_monotime

	Monotonic milliseconds on the last check-point.

	
struct kr_cache_p

	
Public Members

	
uint32_t time

	The time of inception.

	
uint32_t ttl

	TTL at inception moment.

Assuming it fits into int32_t ATM.

	
uint8_t rank

	See enum kr_rank.

	
void* raw_data

	

	
void * raw_bound

	

	
struct kr_cache_p::@0 kr_cache_p::@1

	

Nameservers

Defines

	
KR_NS_DEAD

	See kr_nsrep_update_rtt()

	
KR_NS_FWD_DEAD

	

	
KR_NS_TIMEOUT_RETRY_INTERVAL

	If once NS was marked as “timeouted”, it won’t participate in NS elections at least KR_NS_TIMEOUT_RETRY_INTERVAL milliseconds (now: one second).

	
KR_NSREP_MAXADDR

	

Typedefs

	
typedef struct kr_nsrep_rtt_lru_entry kr_nsrep_rtt_lru_entry_t

	

Enums

	
kr_ns_score

	NS RTT score (special values).

	Note

	RTT is measured in milliseconds.

Values:

	
KR_CONN_RTT_MAX

	

	

	

	

	

	

	

	
2

	

	
100

	

	
10

	

	
kr_ns_rep

	NS QoS flags.

Values:

	
0

	NS has no IPv4.

	
1

	NS has no IPv6.

	
2

	NS has no EDNS support.

	
kr_ns_update_mode

	NS RTT update modes.

First update is always KR_NS_RESET unless KR_NS_UPDATE_NORESET mode had choosen.

Values:

	
0

	Update as smooth over last two measurements.

	
KR_NS_UPDATE_NORESET

	Same as KR_NS_UPDATE, but disable fallback to KR_NS_RESET on newly added entries.

Zero is used as initial value.

	
KR_NS_RESET

	Set to given value.

	
KR_NS_ADD

	Increment current value.

	
KR_NS_MAX

	Set to maximum of current/proposed value.

Functions

	
typedef lru_t(kr_nsrep_rtt_lru_entry_t)

	NS QoS tracking.

	
typedef lru_t(unsigned)

	NS reputation tracking.

	
KR_EXPORT int kr_nsrep_set(struct kr_query * qry, size_t index, const struct sockaddr * sock)

	Set given NS address.

(Very low-level access to the list.)
	Return

	0 or an error code, in particular kr_error(ENOENT) for net.ipvX

	Parameters

	
	qry: updated query

	index: index of the updated target

	sock: socket address to use (sockaddr_in or sockaddr_in6 or NULL)

	
KR_EXPORT int kr_nsrep_elect(struct kr_query * qry, struct kr_context * ctx)

	Elect best nameserver/address pair from the nsset.

	Return

	0 or an error code

	Parameters

	
	qry: updated query

	ctx: resolution context

	
KR_EXPORT int kr_nsrep_elect_addr(struct kr_query * qry, struct kr_context * ctx)

	Elect best nameserver/address pair from the nsset.

	Return

	0 or an error code

	Parameters

	
	qry: updated query

	ctx: resolution context

	
KR_EXPORT int kr_nsrep_update_rtt(struct kr_nsrep * ns, const struct sockaddr * addr, unsigned score, kr_nsrep_rtt_lru_t * cache, int umode)

	Update NS address RTT information.

In KR_NS_UPDATE mode reputation is smoothed over last N measurements.

	Return

	0 on success, error code on failure

	Parameters

	
	ns: updated NS representation

	addr: chosen address (NULL for first)

	score: new score (i.e. RTT), see enum kr_ns_score

	cache: RTT LRU cache

	umode: update mode (KR_NS_UPDATE or KR_NS_RESET or KR_NS_ADD)

	
KR_EXPORT int kr_nsrep_update_rep(struct kr_nsrep * ns, unsigned reputation, kr_nsrep_lru_t * cache)

	Update NSSET reputation information.

	Return

	0 on success, error code on failure

	Parameters

	
	ns: updated NS representation

	reputation: combined reputation flags, see enum kr_ns_rep

	cache: LRU cache

	
int kr_nsrep_copy_set(struct kr_nsrep * dst, const struct kr_nsrep * src)

	Copy NSSET reputation information and resets score.

	Return

	0 on success, error code on failure

	Parameters

	
	dst: updated NS representation

	src: source NS representation

	
KR_EXPORT int kr_nsrep_sort(struct kr_nsrep * ns, struct kr_context * ctx)

	Sort addresses in the query nsrep list by cached RTT.

if RTT is greater then KR_NS_TIMEOUT, address will placed at the beginning of the nsrep list once in cache.ns_tout() milliseconds. Otherwise it will be sorted as if it has cached RTT equal to KR_NS_MAX_SCORE + 1.
	Return

	0 or an error code

	Note

	ns reputation is zeroed and score is set to KR_NS_MAX_SCORE + 1.

	Parameters

	
	ns: updated kr_nsrep

	ctx: name resolution context.

	
struct kr_nsrep_rtt_lru_entry

	
Public Members

	
unsigned score

	

	
uint64_t tout_timestamp

	

	
struct kr_nsrep

	#include <nsrep.h>Name server representation.

Contains extra information about the name server, e.g. score or other metadata.

Public Members

	
unsigned score

	NS score.

	
unsigned reputation

	NS reputation.

	
const knot_dname_t* name

	NS name.

	
struct kr_context* ctx

	Resolution context.

	
union inaddr kr_nsrep::addr[KR_NSREP_MAXADDR]

	NS address(es)

Functions

	
KR_EXPORT int kr_zonecut_init(struct kr_zonecut * cut, const knot_dname_t * name, knot_mm_t * pool)

	Populate root zone cut with SBELT.

	Return

	0 or error code

	Parameters

	
	cut: zone cut

	name:

	pool:

	
KR_EXPORT void kr_zonecut_deinit(struct kr_zonecut * cut)

	Clear the structure and free the address set.

	Parameters

	
	cut: zone cut

	
KR_EXPORT void kr_zonecut_move(struct kr_zonecut * to, const struct kr_zonecut * from)

	Move a zonecut, transferring ownership of any pointed-to memory.

	Parameters

	
	to: the target - it gets deinit-ed

	from: the source - not modified, but shouldn’t be used afterward

	
KR_EXPORT void kr_zonecut_set(struct kr_zonecut * cut, const knot_dname_t * name)

	Reset zone cut to given name and clear address list.

	Note

	This clears the address list even if the name doesn’t change. TA and DNSKEY don’t change.

	Parameters

	
	cut: zone cut to be set

	name: new zone cut name

	
KR_EXPORT int kr_zonecut_copy(struct kr_zonecut * dst, const struct kr_zonecut * src)

	Copy zone cut, including all data.

Does not copy keys and trust anchor.
	Return

	0 or an error code; If it fails with kr_error(ENOMEM), it may be in a half-filled state, but it’s safe to deinit…

	Note

	addresses for names in src get replaced and others are left as they were.

	Parameters

	
	dst: destination zone cut

	src: source zone cut

	
KR_EXPORT int kr_zonecut_copy_trust(struct kr_zonecut * dst, const struct kr_zonecut * src)

	Copy zone trust anchor and keys.

	Return

	0 or an error code

	Parameters

	
	dst: destination zone cut

	src: source zone cut

	
KR_EXPORT int kr_zonecut_add(struct kr_zonecut * cut, const knot_dname_t * ns, const void * data, int len)

	Add address record to the zone cut.

The record will be merged with existing data, it may be either A/AAAA type.

	Return

	0 or error code

	Parameters

	
	cut: zone cut to be populated

	ns: nameserver name

	data: typically knot_rdata_t::data

	len: typically knot_rdata_t::len

	
KR_EXPORT int kr_zonecut_del(struct kr_zonecut * cut, const knot_dname_t * ns, const void * data, int len)

	Delete nameserver/address pair from the zone cut.

	Return

	0 or error code

	Parameters

	
	cut:

	ns: name server name

	data: typically knot_rdata_t::data

	len: typically knot_rdata_t::len

	
KR_EXPORT int kr_zonecut_del_all(struct kr_zonecut * cut, const knot_dname_t * ns)

	Delete all addresses associated with the given name.

	Return

	0 or error code

	Parameters

	
	cut:

	ns: name server name

	
KR_EXPORT KR_PURE pack_t* kr_zonecut_find(struct kr_zonecut * cut, const knot_dname_t * ns)

	Find nameserver address list in the zone cut.

	Note

	This can be used for membership test, a non-null pack is returned if the nameserver name exists.

	Return

	pack of addresses or NULL

	Parameters

	
	cut:

	ns: name server name

	
KR_EXPORT int kr_zonecut_set_sbelt(struct kr_context * ctx, struct kr_zonecut * cut)

	Populate zone cut with a root zone using SBELT :rfc:1034

	Return

	0 or error code

	Parameters

	
	ctx: resolution context (to fetch root hints)

	cut: zone cut to be populated

	
KR_EXPORT int kr_zonecut_find_cached(struct kr_context * ctx, struct kr_zonecut * cut, const knot_dname_t * name, const struct kr_query * qry, bool *restrict secured)

	Populate zone cut address set from cache.

	Return

	0 or error code (ENOENT if it doesn’t find anything)

	Parameters

	
	ctx: resolution context (to fetch data from LRU caches)

	cut: zone cut to be populated

	name: QNAME to start finding zone cut for

	qry: query for timestamp and stale-serving decisions

	secured: set to true if want secured zone cut, will return false if it is provably insecure

	
KR_EXPORT bool kr_zonecut_is_empty(struct kr_zonecut * cut)

	Check if any address is present in the zone cut.

	Return

	true/false

	Parameters

	
	cut: zone cut to check

	
struct kr_zonecut

	#include <zonecut.h>Current zone cut representation.

Public Members

	
knot_dname_t* name

	Zone cut name.

	
knot_rrset_t* key

	Zone cut DNSKEY.

	
knot_rrset_t* trust_anchor

	Current trust anchor.

	
struct kr_zonecut* parent

	Parent zone cut.

	
trie_t* nsset

	Map of nameserver => address_set (pack_t).

	
knot_mm_t* pool

	Memory pool.

Modules

Module API definition and functions for (un)loading modules.

Defines

	
KR_MODULE_EXPORT(module)

	Export module API version (place this at the end of your module).

	Parameters

	
	module: module name (e.g. policy)

	
KR_MODULE_API

	

Typedefs

	
typedef uint32_t() module_api_cb(void)

	

	
typedef char*() kr_prop_cb(void *env, struct kr_module *self, const char *input)

	Module property callback.

Input and output is passed via a JSON encoded in a string.

	Return

	a free-form JSON output (malloc-ated)

	Note

	see modules_create_table_for_c() implementation for details about the input/output conversion.

	Parameters

	
	env: pointer to the lua engine, i.e. struct engine *env (TODO: explicit type)

	input: parameter (NULL if missing/nil on lua level)

	
typedef int(* kr_module_init_cb)(struct kr_module *)

	

Functions

	
KR_EXPORT int kr_module_load(struct kr_module * module, const char * name, const char * path)

	Load a C module instance into memory.

And call its init().

	Return

	0 or an error

	Parameters

	
	module: module structure. Will be overwritten except for ->data on success.

	name: module name

	path: module search path

	
KR_EXPORT void kr_module_unload(struct kr_module * module)

	Unload module instance.

	Note

	currently used even for lua modules

	Parameters

	
	module: module structure

	
KR_EXPORT kr_module_init_cb kr_module_get_embedded(const char * name)

	Get embedded module’s init function by name (or NULL).

	
struct kr_module

	#include <module.h>Module representation.

The five symbols (init, …) may be defined by the module as name_init(), etc; all are optional and missing symbols are represented as NULLs;

Public Members

	
char* name

	

	
intinit)(struct kr_module *self)

	Constructor.

Called after loading the module.
	Return

	error code. Lua modules: not populated, called via lua directly.

	
intdeinit)(struct kr_module *self)

	Destructor.

Called before unloading the module.
	Return

	error code.

	
intconfig)(struct kr_module *self, const char *input)

	Configure with encoded JSON (NULL if missing).

	Return

	error code. Lua modules: not used and not useful from C. When called from lua, input is JSON, like for kr_prop_cb.

	
const kr_layer_api_t* layer

	Packet processing API specs.

May be NULL. See docs on that type. Owned by the module code.

	
const struct kr_prop* props

	List of properties.

May be NULL. Terminated by { NULL, NULL, NULL }. Lua modules: not used and not useful.

	
void* lib

	dlopen() handle; RTLD_DEFAULT for embedded modules; NULL for lua modules.

	
void* data

	Custom data context.

	
struct kr_prop

	#include <module.h>Module property (named callable).

Public Members

	
kr_prop_cb* cb

	

	
const char* name

	

	
const char* info

	

Defines

	
QRVERBOSE(_query, _cls, ...)

	Print a debug message related to resolution.

	Parameters

	
	_query: associated kr_query, may be NULL

	_cls: identifying string, typically of length exactly four (padded)

	...: printf-compatible list of parameters

Typedefs

	
typedef struct kr_layer kr_layer_t

	Packet processing context.

	
typedef struct kr_layer_api kr_layer_api_t

	

Enums

	
kr_layer_state

	Layer processing states.

Only one value at a time (but see TODO).

Each state represents the state machine transition, and determines readiness for the next action. See struct kr_layer_api for the actions.

TODO: the cookie module sometimes sets (_FAIL | _DONE) on purpose (!)

Values:

	
0

	Consume data.

	
1

	Produce data.

	
2

	Finished successfully or a special case: in CONSUME phase this can be used (by iterator) to do a transition to PRODUCE phase again, in which case the packet wasn’t accepted for some reason.

	
3

	Error.

	
4

	Paused, waiting for a sub-query.

	
struct kr_layer

	#include <layer.h>Packet processing context.

Public Members

	
int state

	The current state; bitmap of enum kr_layer_state.

	
struct kr_request* req

	The corresponding request.

	
const struct kr_layer_api* api

	

	
knot_pkt_t* pkt

	In glue for lua kr_layer_api it’s used to pass the parameter.

	
struct sockaddr* dst

	In glue for checkout layer it’s used to pass the parameter.

	
bool is_stream

	In glue for checkout layer it’s used to pass the parameter.

	
struct kr_layer_api

	#include <layer.h>Packet processing module API.

All functions return the new kr_layer_state.

Public Members

	
intbegin)(kr_layer_t *ctx)

	Start of processing the DNS request.

	
intreset)(kr_layer_t *ctx)

	

	
intfinish)(kr_layer_t *ctx)

	Paired to begin, called both on successes and failures.

	
intconsume)(kr_layer_t *ctx, knot_pkt_t *pkt)

	Processing an answer from upstream or the answer to the request.

Lua API: call is omitted iff (state & KR_STATE_FAIL).

	
intproduce)(kr_layer_t *ctx, knot_pkt_t *pkt)

	Produce either an answer to the request or a query for upstream (or fail).

Lua API: call is omitted iff (state & KR_STATE_FAIL).

	
intcheckout)(kr_layer_t *ctx, knot_pkt_t *packet, struct sockaddr *dst, int type)

	Finalises the outbound query packet with the knowledge of the IP addresses.

The checkout layer doesn’t persist the state, so canceled subrequests don’t affect the resolution or rest of the processing. Lua API: call is omitted iff (state & KR_STATE_FAIL).

	
intanswer_finalize)(kr_layer_t *ctx)

	Finalises the answer.

Last chance to affect what will get into the answer, including EDNS.

	
void* data

	The C module can store anything in here.

	
int kr_layer_api::cb_slots[]

	Internal to .

/daemon/ffimodule.c.

	
struct kr_layer_pickle

	#include <layer.h>Pickled layer state (api, input, state).

Public Members

	
struct kr_layer_pickle* next

	

	
const struct kr_layer_api* api

	

	
knot_pkt_t* pkt

	

	
unsigned state

	

Utilities

Defines

	
kr_log_info

	

	
kr_log_error(...)

	

	
kr_log_trace_enabled(query)

	Return true if the query has request log handler installed.

	
VERBOSE_STATUS

	Block run in verbose mode; optimized when not run.

	
WITH_VERBOSE(query)

	

	
kr_log_verbose

	

	
KR_DNAME_GET_STR(dname_str, dname)

	

	
KR_RRTYPE_GET_STR(rrtype_str, rrtype)

	

	
static_assert(cond, msg)

	

	
KR_RRKEY_LEN

	

	
SWAP(x, y)

	Swap two places.

Note: the parameters need to be without side effects.

Typedefs

	
typedef void(* trace_callback_f)(struct kr_request *request)

	Callback for request events.

	
typedef void(* trace_log_f)(const struct kr_query *query, const char *source, const char *msg)

	Callback for request logging handler.

Functions

	
KR_EXPORT bool kr_verbose_set(bool status)

	Set verbose mode.

Not available if compiled with -DNOVERBOSELOG.

	
KR_EXPORT KR_PRINTF(1)

	Log a message if in verbose mode.

	
KR_EXPORT KR_PRINTF(3)

	Utility for QRVERBOSE - use that instead.

Log a message through the request log handler.

	Return

	true if the message was logged

	Parameters

	
	query: current query

	source: message source

	fmt: message format

	
static int strcmp_p(const void * p1, const void * p2)

	A strcmp() variant directly usable for qsort() on an array of strings.

	
static long time_diff(struct timeval * begin, struct timeval * end)

	Return time difference in miliseconds.

	Note

	based on the _BSD_SOURCE timersub() macro

	
KR_EXPORT char* kr_strcatdup(unsigned n, ...)

	Concatenate N strings.

	
KR_EXPORT void kr_rnd_buffered(void * data, unsigned int size)

	You probably want kr_rand_* convenience functions instead.

This is a buffered version of gnutls_rnd(GNUTLS_RND_NONCE, ..)

	
static uint64_t kr_rand_bytes(unsigned int size)

	Return a few random bytes.

	
static bool kr_rand_coin(unsigned int nomin, unsigned int denomin)

	Throw a pseudo-random coin, succeeding approximately with probability nomin/denomin.

	low precision, only one byte of randomness (or none with extreme parameters)

	tip: use !kr_rand_coin() to get the complementary probability

	
KR_EXPORT int kr_memreserve(void * baton, char ** mem, size_t elm_size, size_t want, size_t * have)

	Memory reservation routine for knot_mm_t.

	
KR_EXPORT int kr_pkt_recycle(knot_pkt_t * pkt)

	

	
KR_EXPORT int kr_pkt_clear_payload(knot_pkt_t * pkt)

	

	
KR_EXPORT int kr_pkt_put(knot_pkt_t * pkt, const knot_dname_t * name, uint32_t ttl, uint16_t rclass, uint16_t rtype, const uint8_t * rdata, uint16_t rdlen)

	Construct and put record to packet.

	
KR_EXPORT void kr_pkt_make_auth_header(knot_pkt_t * pkt)

	Set packet header suitable for authoritative answer.

(for policy module)

	
KR_EXPORT KR_PURE const char* kr_inaddr(const struct sockaddr * addr)

	Address bytes for given family.

	
KR_EXPORT KR_PURE int kr_inaddr_family(const struct sockaddr * addr)

	Address family.

	
KR_EXPORT KR_PURE int kr_inaddr_len(const struct sockaddr * addr)

	Address length for given family, i.e.

sizeof(struct in*_addr).

	
KR_EXPORT KR_PURE int kr_sockaddr_len(const struct sockaddr * addr)

	Sockaddr length for given family, i.e.

sizeof(struct sockaddr_in*).

	
KR_EXPORT KR_PURE int kr_sockaddr_cmp(const struct sockaddr * left, const struct sockaddr * right)

	Compare two given sockaddr.

return 0 - addresses are equal, error code otherwise.

	
KR_EXPORT KR_PURE uint16_t kr_inaddr_port(const struct sockaddr * addr)

	Port.

	
KR_EXPORT void kr_inaddr_set_port(struct sockaddr * addr, uint16_t port)

	Set port.

	
KR_EXPORT int kr_inaddr_str(const struct sockaddr * addr, char * buf, size_t * buflen)

	Write string representation for given address as “<addr>#<port>”.

	Parameters

	
	[in] addr: the raw address

	[out] buf: the buffer for output string

	[inout] buflen: the available(in) and utilized(out) length, including \0

	
KR_EXPORT int kr_ntop_str(int family, const void * src, uint16_t port, char * buf, size_t * buflen)

	Write string representation for given address as “<addr>#<port>”.

It’s the same as kr_inaddr_str(), but the input address is input in native format like for inet_ntop() (4 or 16 bytes) and port must be separate parameter.

	
static char* kr_straddr(const struct sockaddr * addr)

	

	
KR_EXPORT KR_PURE int kr_straddr_family(const char * addr)

	Return address type for string.

	
KR_EXPORT KR_CONST int kr_family_len(int family)

	Return address length in given family (struct in*_addr).

	
KR_EXPORT struct sockaddr* kr_straddr_socket(const char * addr, int port, knot_mm_t * pool)

	Create a sockaddr* from string+port representation.

Also accepts IPv6 link-local and AF_UNIX starting with “/” (ignoring port)

	
KR_EXPORT int kr_straddr_subnet(void * dst, const char * addr)

	Parse address and return subnet length (bits).

	Warning

	’dst’ must be at least sizeof(struct in6_addr) long.

	
KR_EXPORT int kr_straddr_split(const char * instr, char ipaddr[static restrict(INET6_ADDRSTRLEN+1)], uint16_t * port)

	Splits ip address specified as “addr@port” or “addr#port” into addr and port.

	Return

	error code

	Note

	Typically you follow this by kr_straddr_socket().

	Note

	Only internet addresses are supported, i.e. no AF_UNIX sockets.

	Parameters

	
	instr[in]: zero-terminated input, e.g. “192.0.2.1#12345\0”

	ipaddr[out]: working buffer for the port-less prefix of instr; length >= INET6_ADDRSTRLEN + 1.

	port[out]: written in case it’s specified in instr

	
KR_EXPORT int kr_straddr_join(const char * addr, uint16_t port, char * buf, size_t * buflen)

	Formats ip address and port in “addr#port” format.

and performs validation.
	Note

	Port always formatted as five-character string with leading zeros.

	Return

	kr_error(EINVAL) - addr or buf is NULL or buflen is 0 or addr doesn’t contain a valid ip address kr_error(ENOSP) - buflen is too small

	
KR_EXPORT KR_PURE int kr_bitcmp(const char * a, const char * b, int bits)

	Compare memory bitwise.

The semantics is “the same” as for memcmp(). The partial byte is considered with more-significant bits first, so this is e.g. suitable for comparing IP prefixes.

	
static uint8_t KEY_FLAG_RANK(const char * key)

	

	
static bool KEY_COVERING_RRSIG(const char * key)

	

	
KR_EXPORT int kr_rrkey(char * key, uint16_t class, const knot_dname_t * owner, uint16_t type, uint16_t additional)

	Create unique null-terminated string key for RR.

	Return

	key length if successful or an error

	Parameters

	
	key: Destination buffer for key size, MUST be KR_RRKEY_LEN or larger.

	class: RR class.

	owner: RR owner name.

	type: RR type.

	additional: flags (for instance can be used for storing covered type when RR type is RRSIG).

	
KR_EXPORT int kr_ranked_rrarray_add(ranked_rr_array_t * array, const knot_rrset_t * rr, uint8_t rank, bool to_wire, uint32_t qry_uid, knot_mm_t * pool)

	

	
int kr_ranked_rrarray_set_wire(ranked_rr_array_t * array, bool to_wire, uint32_t qry_uid, bool check_dups, bool(*extraCheck)(const ranked_rr_array_entry_t *))

	

	
KR_EXPORT char* kr_pkt_text(const knot_pkt_t * pkt)

	
	Return

	Newly allocated string representation of packet. Caller has to free() returned string.

	
KR_PURE char* kr_rrset_text(const knot_rrset_t * rr)

	

	
static KR_PURE char* kr_dname_text(const knot_dname_t * name)

	

	
static KR_CONST char* kr_rrtype_text(const uint16_t rrtype)

	

	
KR_EXPORT char* kr_module_call(struct kr_context * ctx, const char * module, const char * prop, const char * input)

	Call module property.

	
static uint16_t kr_rrset_type_maysig(const knot_rrset_t * rr)

	Return the (covered) type of an nonempty RRset.

	
KR_EXPORT uint64_t kr_now()

	The current time in monotonic milliseconds.

	Note

	it may be outdated in case of long callbacks; see uv_now().

	
KR_EXPORT void kr_uv_free_cb(uv_handle_t * handle)

	Call free(handle->data); it’s useful e.g.

as a callback in uv_close().

	
int knot_dname_lf2wire(knot_dname_t * dst, uint8_t len, const uint8_t * lf)

	Convert name from lookup format to wire.

See knot_dname_lf

	Note

	len bytes are read and len+1 are written with normal LF, but it’s also allowed that the final zero byte is omitted in LF.

	Return

	the number of bytes written (>0) or error code (<0)

	
static int kr_dname_lf(uint8_t * dst, const knot_dname_t * src, bool add_wildcard)

	Patched knot_dname_lf.

LF for “.” has length zero instead of one, for consistency. (TODO: consistency?)
	Note

	packet is always NULL

	Parameters

	
	add_wildcard: append the wildcard label

	
KR_EXPORT const char* kr_strptime_diff(const char * format, const char * time1_str, const char * time0_str, double * diff)

	Difference between two calendar times specified as strings.

	Parameters

	
	format[in]: format for strptime

	diff[out]: result from C difftime(time1, time0)

	
KR_EXPORT void kr_rrset_init(knot_rrset_t * rrset, knot_dname_t * owner, uint16_t type, uint16_t rclass, uint32_t ttl)

	

	
KR_EXPORT uint16_t kr_pkt_has_dnssec(const knot_pkt_t * pkt)

	

	
KR_EXPORT uint16_t kr_pkt_qclass(const knot_pkt_t * pkt)

	

	
KR_EXPORT uint16_t kr_pkt_qtype(const knot_pkt_t * pkt)

	

	
KR_EXPORT uint32_t kr_rrsig_sig_inception(const knot_rdata_t * rdata)

	

	
KR_EXPORT uint32_t kr_rrsig_sig_expiration(const knot_rdata_t * rdata)

	

	
KR_EXPORT uint16_t kr_rrsig_type_covered(const knot_rdata_t * rdata)

	

Variables

	
KR_EXPORT bool kr_verbose_status

	Whether in verbose mode.

Only use this for reading.

	
KR_EXPORT KR_EXPORT const char* cls

	

	
KR_EXPORT const char const char * fmt

	

	
KR_EXPORT const char* source

	

	
const uint8_t KEY_FLAG_RRSIG = 0x02

	

	
union inaddr

	#include <utils.h>Simple storage for IPx address or AF_UNSPEC.

Public Members

	
struct sockaddr ip

	

	
struct sockaddr_in ip4

	

	
struct sockaddr_in6 ip6

	

Defines

	
KR_EXPORT

	

	
KR_CONST

	

	
KR_PURE

	

	
KR_NORETURN

	

	
KR_COLD

	

	
KR_PRINTF(n)

	

	
uint

	

	
kr_ok

	

	
kr_strerror(x)

	

Typedefs

	
typedef unsigned int uint

	

Functions

	
static int KR_COLD kr_error(int x)

	

Generics library

This small collection of “generics” was born out of frustration that I couldn’t find no
such thing for C. It’s either bloated, has poor interface, null-checking is absent or
doesn’t allow custom allocation scheme. BSD-licensed (or compatible) code is allowed here,
as long as it comes with a test case in tests/test_generics.c.

	array - a set of simple macros to make working with dynamic arrays easier.

	queue - a FIFO + LIFO queue.

	map - a Crit-bit tree [https://cr.yp.to/critbit.html] key-value map implementation (public domain) that comes with tests.

	set - set abstraction implemented on top of map (unused now).

	pack - length-prefixed list of objects (i.e. array-list).

	lru - LRU-like hash table

	trie - a trie-based key-value map, taken from knot-dns

array

A set of simple macros to make working with dynamic arrays easier.

MIN(array_push(arr, val), other)

	Note

	The C has no generics, so it is implemented mostly using macros. Be aware of that, as direct usage of the macros in the evaluating macros may lead to different expectations:

May evaluate the code twice, leading to unexpected behaviour. This is a price to pay for the absence of proper generics.

Example usage:

array_t(const char*) arr;
array_init(arr);

// Reserve memory in advance
if (array_reserve(arr, 2) < 0) {
 return ENOMEM;
}

// Already reserved, cannot fail
array_push(arr, "princess");
array_push(arr, "leia");

// Not reserved, may fail
if (array_push(arr, "han") < 0) {
 return ENOMEM;
}

// It does not hide what it really is
for (size_t i = 0; i < arr.len; ++i) {
 printf("%s\n", arr.at[i]);
}

// Random delete
array_del(arr, 0);

Defines

	
array_t(type)

	Declare an array structure.

	
array_init(array)

	Zero-initialize the array.

	
array_clear(array)

	Free and zero-initialize the array (plain malloc/free).

	
array_clear_mm(array, free, baton)

	Make the array empty and free pointed-to memory.

Mempool usage: pass mm_free and a knot_mm_t* .

	
array_reserve(array, n)

	Reserve capacity for at least n elements.

	Return

	0 if success, <0 on failure

	
array_reserve_mm(array, n, reserve, baton)

	Reserve capacity for at least n elements.

Mempool usage: pass kr_memreserve and a knot_mm_t* .
	Return

	0 if success, <0 on failure

	
array_push_mm(array, val, reserve, baton)

	Push value at the end of the array, resize it if necessary.

Mempool usage: pass kr_memreserve and a knot_mm_t* .
	Note

	May fail if the capacity is not reserved.

	Return

	element index on success, <0 on failure

	
array_push(array, val)

	Push value at the end of the array, resize it if necessary (plain malloc/free).

	Note

	May fail if the capacity is not reserved.

	Return

	element index on success, <0 on failure

	
array_pop(array)

	Pop value from the end of the array.

	
array_del(array, i)

	Remove value at given index.

	Return

	0 on success, <0 on failure

	
array_tail(array)

	Return last element of the array.

	Warning

	Undefined if the array is empty.

Functions

	
static size_t array_next_count(size_t want)

	Simplified Qt containers growth strategy.

	
static int array_std_reserve(void * baton, char ** mem, size_t elm_size, size_t want, size_t * have)

	

	
static void array_std_free(void * baton, void * p)

	

queue

A queue, usable for FIFO and LIFO simultaneously.

Both the head and tail of the queue can be accessed and pushed to, but only the head can be popped from.

Example usage:

// define new queue type, and init a new queue instance
typedef queue_t(int) queue_int_t;
queue_int_t q;
queue_init(q);
// do some operations
queue_push(q, 1);
queue_push(q, 2);
queue_push(q, 3);
queue_push(q, 4);
queue_pop(q);
assert(queue_head(q) == 2);
assert(queue_tail(q) == 4);

// you may iterate
typedef queue_it_t(int) queue_it_int_t;
for (queue_it_int_t it = queue_it_begin(q); !queue_it_finished(it);
 queue_it_next(it)) {
 ++queue_it_val(it);
}
assert(queue_tail(q) == 5);

queue_push_head(q, 0);
++queue_tail(q);
assert(queue_tail(q) == 6);
// free it up
queue_deinit(q);

// you may use dynamic allocation for the type itself
queue_int_t *qm = malloc(sizeof(queue_int_t));
queue_init(*qm);
queue_deinit(*qm);
free(qm);

	Note

	The implementation uses a singly linked list of blocks where each block stores an array of values (for better efficiency).

Defines

	
queue_t(type)

	The type for queue, parametrized by value type.

	
queue_init(q)

	Initialize a queue.

You can malloc() it the usual way.

	
queue_deinit(q)

	De-initialize a queue: make it invalid and free any inner allocations.

	
queue_push(q, data)

	Push data to queue’s tail.

(Type-safe version; use _impl() otherwise.)

	
queue_push_head(q, data)

	Push data to queue’s head.

(Type-safe version; use _impl() otherwise.)

	
queue_pop(q)

	Remove the element at the head.

The queue must not be empty.

	
queue_head(q)

	Return a “reference” to the element at the head (it’s an L-value).

The queue must not be empty.

	
queue_tail(q)

	Return a “reference” to the element at the tail (it’s an L-value).

The queue must not be empty.

	
queue_len(q)

	Return the number of elements in the queue (very efficient).

	
queue_it_t(type)

	Type for queue iterator, parametrized by value type.

It’s a simple structure that owns no other resources. You may NOT use it after doing any push or pop (without _begin again).

	
queue_it_begin(q)

	Initialize a queue iterator at the head of the queue.

If you use this in assignment (instead of initialization), you will unfortunately need to add corresponding type-cast in front. Beware: there’s no type-check between queue and iterator!

	
queue_it_val(it)

	Return a “reference” to the current element (it’s an L-value) .

	
queue_it_finished(it)

	Test if the iterator has gone past the last element.

If it has, you may not use _val or _next.

	
queue_it_next(it)

	Advance the iterator to the next element.

map

A Crit-bit tree key-value map implementation.

Example usage:
	Warning

	If the user provides a custom allocator, it must return addresses aligned to 2B boundary.

map_t map = map_make(NULL);

// Custom allocator (optional)
map.malloc = &mymalloc;
map.baton = &mymalloc_context;

// Insert k-v pairs
int values = { 42, 53, 64 };
if (map_set(&map, "princess", &values[0]) != 0 ||
 map_set(&map, "prince", &values[1]) != 0 ||
 map_set(&map, "leia", &values[2]) != 0) {
 fail();
}

// Test membership
if (map_contains(&map, "leia")) {
 success();
}

// Prefix search
int i = 0;
int count(const char *k, void *v, void *ext) { (*(int *)ext)++; return 0; }
if (map_walk_prefixed(map, "princ", count, &i) == 0) {
 printf("%d matches\n", i);
}

// Delete
if (map_del(&map, "badkey") != 0) {
 fail(); // No such key
}

// Clear the map
map_clear(&map);

Defines

	
map_walk(map, callback, baton)

	

Functions

	
static map_t map_make(struct knot_mm * pool)

	Creates an new empty critbit map.

Pass NULL for malloc+free.

	
int map_contains(map_t * map, const char * str)

	Returns non-zero if map contains str.

	
void* map_get(map_t * map, const char * str)

	Returns value if map contains str.

Note: NULL may mean two different things.

	
int map_set(map_t * map, const char * str, void * val)

	Inserts str into map.

Returns 0 if new, 1 if replaced, or ENOMEM.

	
int map_del(map_t * map, const char * str)

	Deletes str from the map, returns 0 on suceess.

	
void map_clear(map_t * map)

	Clears the given map.

	
int map_walk_prefixed(map_t * map, const char * prefix, int(*callback)(const char *, void *, void *), void * baton)

	Calls callback for all strings in map with the given prefix.

Returns value immediately if a callback returns nonzero.

	Parameters

	
	map:

	prefix: required string prefix (empty => all strings)

	callback: callback parameters are (key, value, baton)

	baton: passed uservalue

	
struct map_t

	#include <map.h>Main data structure.

Public Members

	
void* root

	

	
struct knot_mm* pool

	

set

A set abstraction implemented on top of map.

Example usage:
	Note

	The API is based on map.h, see it for more examples.

set_t set = set_make(NULL);

// Insert keys
if (set_add(&set, "princess") != 0 ||
 set_add(&set, "prince") != 0 ||
 set_add(&set, "leia") != 0) {
 fail();
}

// Test membership
if (set_contains(&set, "leia")) {
 success();
}

// Prefix search
int i = 0;
int count(const char *s, void *n) { (*(int *)n)++; return 0; }
if (set_walk_prefixed(set, "princ", count, &i) == 0) {
 printf("%d matches\n", i);
}

// Delete
if (set_del(&set, "badkey") != 0) {
 fail(); // No such key
}

// Clear the set
set_clear(&set);

Defines

	
set_make

	Creates an new, empty critbit set

	
set_contains(set, str)

	Returns non-zero if set contains str

	
set_add(set, str)

	Inserts str into set. Returns 0 if new, 1 if already present, or ENOMEM.

	
set_del(set, str)

	Deletes str from the set, returns 0 on suceess

	
set_clear(set)

	Clears the given set

	
set_walk(set, callback, baton)

	Calls callback for all strings in map

	
set_walk_prefixed(set, prefix, callback, baton)

	Calls callback for all strings in set with the given prefix

Typedefs

	
typedef map_t set_t

	

	
typedef int() set_walk_cb(const char *, void *)

	

pack

A length-prefixed list of objects, also an array list.

Each object is prefixed by item length, unlike array this structure permits variable-length data. It is also equivallent to forward-only list backed by an array.

Example usage:
	Note

	Maximum object size is 2^16 bytes, see pack_objlen_t If some mistake happens somewhere, the access may end up in an infinite loop. (equality comparison on pointers)

pack_t pack;
pack_init(pack);

// Reserve 2 objects, 6 bytes total
pack_reserve(pack, 2, 4 + 2);

// Push 2 objects
pack_obj_push(pack, U8("jedi"), 4)
pack_obj_push(pack, U8("\xbe\xef"), 2);

// Iterate length-value pairs
uint8_t *it = pack_head(pack);
while (it != pack_tail(pack)) {
 uint8_t *val = pack_obj_val(it);
 it = pack_obj_next(it);
}

// Remove object
pack_obj_del(pack, U8("jedi"), 4);

pack_clear(pack);

Defines

	
pack_init(pack)

	Zero-initialize the pack.

	
pack_clear(pack)

	Make the pack empty and free pointed-to memory (plain malloc/free).

	
pack_clear_mm(pack, free, baton)

	Make the pack empty and free pointed-to memory.

Mempool usage: pass mm_free and a knot_mm_t* .

	
pack_reserve(pack, objs_count, objs_len)

	Reserve space for additional objects in the pack (plain malloc/free).

	Return

	0 if success, <0 on failure

	
pack_reserve_mm(pack, objs_count, objs_len, reserve, baton)

	Reserve space for additional objects in the pack.

Mempool usage: pass kr_memreserve and a knot_mm_t* .
	Return

	0 if success, <0 on failure

	
pack_head(pack)

	Return pointer to first packed object.

Recommended way to iterate: for (uint8_t *it = pack_head(pack); it != pack_tail(pack); it = pack_obj_next(it))

	
pack_tail(pack)

	Return pack end pointer.

Typedefs

	
typedef uint16_t pack_objlen_t

	Packed object length type.

Functions

	
typedef array_t(uint8_t)

	Pack is defined as an array of bytes.

	
static pack_objlen_t pack_obj_len(uint8_t * it)

	Return packed object length.

	
static uint8_t* pack_obj_val(uint8_t * it)

	Return packed object value.

	
static uint8_t* pack_obj_next(uint8_t * it)

	Return pointer to next packed object.

	
static uint8_t* pack_last(pack_t pack)

	Return pointer to the last packed object.

	
static int pack_obj_push(pack_t * pack, const uint8_t * obj, pack_objlen_t len)

	Push object to the end of the pack.

	Return

	0 on success, negative number on failure

	
static uint8_t* pack_obj_find(pack_t * pack, const uint8_t * obj, pack_objlen_t len)

	Returns a pointer to packed object.

	Return

	pointer to packed object or NULL

	
static int pack_obj_del(pack_t * pack, const uint8_t * obj, pack_objlen_t len)

	Delete object from the pack.

	Return

	0 on success, negative number on failure

	
static int pack_clone(pack_t ** dst, const pack_t * src, knot_mm_t * pool)

	Clone a pack, replacing destination pack; (*dst == NULL) is valid input.

	Return

	kr_error(ENOMEM) on allocation failure.

lru

A lossy cache.

Example usage:

// Define new LRU type
typedef lru_t(int) lru_int_t;

// Create LRU
lru_int_t *lru;
lru_create(&lru, 5, NULL, NULL);

// Insert some values
int *pi = lru_get_new(lru, "luke", strlen("luke"), NULL);
if (pi)
 *pi = 42;
pi = lru_get_new(lru, "leia", strlen("leia"), NULL);
if (pi)
 *pi = 24;

// Retrieve values
int *ret = lru_get_try(lru, "luke", strlen("luke"), NULL);
if (!ret) printf("luke dropped out!\n");
 else printf("luke's number is %d\n", *ret);

char *enemies[] = {"goro", "raiden", "subzero", "scorpion"};
for (int i = 0; i < 4; ++i) {
 int *val = lru_get_new(lru, enemies[i], strlen(enemies[i]), NULL);
 if (val)
 *val = i;
}

// We're done
lru_free(lru);

	Note

	The implementation tries to keep frequent keys and avoid others, even if “used recently”, so it may refuse to store it on lru_get_new(). It uses hashing to split the problem pseudo-randomly into smaller groups, and within each it tries to approximate relative usage counts of several most frequent keys/hashes. This tracking is done for more keys than those that are actually stored.

Defines

	
lru_t(type)

	The type for LRU, parametrized by value type.

	
lru_create(ptable, max_slots, mm_ctx_array, mm_ctx)

	Allocate and initialize an LRU with default associativity.

The real limit on the number of slots can be a bit larger but less than double.

	Note

	The pointers to memory contexts need to remain valid during the whole life of the structure (or be NULL).

	Parameters

	
	ptable: pointer to a pointer to the LRU

	max_slots: number of slots

	mm_ctx_array: memory context to use for the huge array, NULL for default If you pass your own, it needs to produce CACHE_ALIGNED allocations (ubsan).

	mm_ctx: memory context to use for individual key-value pairs, NULL for default

	
lru_free(table)

	Free an LRU created by lru_create (it can be NULL).

	
lru_reset(table)

	Reset an LRU to the empty state (but preserve any settings).

	
lru_get_try(table, key_, len_)

	Find key in the LRU and return pointer to the corresponding value.

	Return

	pointer to data or NULL if not found

	Parameters

	
	table: pointer to LRU

	key_: lookup key

	len_: key length

	
lru_get_new(table, key_, len_, is_new)

	Return pointer to value, inserting if needed (zeroed).

	Return

	pointer to data or NULL (can be even if memory could be allocated!)

	Parameters

	
	table: pointer to LRU

	key_: lookup key

	len_: key lengthkeys

	is_new: pointer to bool to store result of operation (true if entry is newly added, false otherwise; can be NULL).

	
lru_apply(table, function, baton)

	Apply a function to every item in LRU.

	Parameters

	
	table: pointer to LRU

	function: enum lru_apply_do (*function)(const char *key, uint len, val_type *val, void *baton) See enum lru_apply_do for the return type meanings.

	baton: extra pointer passed to each function invocation

	
lru_capacity(table)

	Return the real capacity - maximum number of keys holdable within.

	Parameters

	
	table: pointer to LRU

Enums

	
lru_apply_do

	Possible actions to do with an element.

Values:

	
LRU_APPLY_DO_NOTHING

	

	
LRU_APPLY_DO_EVICT

	

trie

Typedefs

	
typedef void* trie_val_t

	Native API of QP-tries:

	keys are char strings, not necessarily zero-terminated, the structure copies the contents of the passed keys

	values are void* pointers, typically you get an ephemeral pointer to it

	key lengths are limited by 2^32-1 ATM

XXX EDITORS: trie.{h,c} are synced from https://gitlab.labs.nic.cz/knot/knot-dns/tree/68352fc969/src/contrib/qp-trie only with tiny adjustments, mostly #includes and KR_EXPORT.

Element value.

	
typedef struct trie trie_t

	Opaque structure holding a QP-trie.

	
typedef struct trie_it trie_it_t

	Opaque type for holding a QP-trie iterator.

Functions

	
KR_EXPORT trie_t* trie_create(knot_mm_t * mm)

	Create a trie instance. Pass NULL to use malloc+free.

	
KR_EXPORT void trie_free(trie_t * tbl)

	Free a trie instance.

	
KR_EXPORT void trie_clear(trie_t * tbl)

	Clear a trie instance (make it empty).

	
KR_EXPORT size_t trie_weight(const trie_t * tbl)

	Return the number of keys in the trie.

	
KR_EXPORT trie_val_t* trie_get_try(trie_t * tbl, const char * key, uint32_t len)

	Search the trie, returning NULL on failure.

	
KR_EXPORT trie_val_t* trie_get_first(trie_t * tbl, char ** key, uint32_t * len)

	Return pointer to the minimum. Optionally with key and its length.

	
KR_EXPORT trie_val_t* trie_get_ins(trie_t * tbl, const char * key, uint32_t len)

	Search the trie, inserting NULL trie_val_t on failure.

	
KR_EXPORT int trie_get_leq(trie_t * tbl, const char * key, uint32_t len, trie_val_t ** val)

	Search for less-or-equal element.

	Return

	KNOT_EOK for exact match, 1 for previous, KNOT_ENOENT for not-found, or KNOT_E*.

	Parameters

	
	tbl: Trie.

	key: Searched key.

	len: Key length.

	val: Must be valid; it will be set to NULL if not found or errored.

	
KR_EXPORT int trie_apply(trie_t * tbl, int(*f)(trie_val_t *, void *), void * d)

	Apply a function to every trie_val_t, in order.

	Return

	First nonzero from f() or zero (i.e. KNOT_EOK).

	Parameters

	
	d: Parameter passed as the second argument to f().

	
KR_EXPORT int trie_del(trie_t * tbl, const char * key, uint32_t len, trie_val_t * val)

	Remove an item, returning KNOT_EOK if succeeded or KNOT_ENOENT if not found.

If val!=NULL and deletion succeeded, the deleted value is set.

	
KR_EXPORT int trie_del_first(trie_t * tbl, char * key, uint32_t * len, trie_val_t * val)

	Remove the first item, returning KNOT_EOK on success.

You may optionally get the key and/or value. The key is copied, so you need to pass sufficient len, otherwise kr_error(ENOSPC) is returned.

	
KR_EXPORT trie_it_t* trie_it_begin(trie_t * tbl)

	Create a new iterator pointing to the first element (if any).

	
KR_EXPORT void trie_it_next(trie_it_t * it)

	Advance the iterator to the next element.

Iteration is in ascending lexicographical order. In particular, the empty string would be considered as the very first.

	Note

	You may not use this function if the trie’s key-set has been modified during the lifetime of the iterator (modifying values only is OK).

	
KR_EXPORT bool trie_it_finished(trie_it_t * it)

	Test if the iterator has gone past the last element.

	
KR_EXPORT void trie_it_free(trie_it_t * it)

	Free any resources of the iterator. It’s OK to call it on NULL.

	
KR_EXPORT const char* trie_it_key(trie_it_t * it, size_t * len)

	Return pointer to the key of the current element.

	Note

	The optional len is uint32_t internally but size_t is better for our usage, as it is without an additional type conversion.

	
KR_EXPORT trie_val_t* trie_it_val(trie_it_t * it)

	Return pointer to the value of the current element (writable).

Modules API reference

	Supported languages

	The anatomy of an extension

	Writing a module in Lua

	Writing a module in C

	Configuring modules

	Exposing C module properties

Supported languages

Currently modules written in C and Lua(JIT) are supported.

The anatomy of an extension

A module is a shared object or script defining specific functions/fields; here’s an overview.

	C

	Lua

	Params

	Comment

	X_api() 1

	
	
	API version

	X_init()

	X.init()

	module

	Constructor

	X_deinit()

	X.deinit()

	module

	Destructor

	X_config()

	X.config()

	module, str

	Configuration

	X_layer

	X.layer

	
	Module layer

	X_props

	
	
	List of properties

	1

	Mandatory symbol; defined by using KR_MODULE_EXPORT().

The X corresponds to the module name; if the module name is hints, the prefix for constructor would be hints_init().
More details are in docs for the kr_module and kr_layer_api structures.

Note

The modules get ordered – by default in the same as the order in which they were loaded. The loading command can specify where in the order the module should be positioned.

Writing a module in Lua

The probably most convenient way of writing modules is Lua since you can use already installed modules
from system and have first-class access to the scripting engine. You can also tap to all the events, that
the C API has access to, but keep in mind that transitioning from the C to Lua function is slower than
the other way round, especially when JIT-compilation is taken into account.

Note

The Lua functions retrieve an additional first parameter compared to the C counterparts - a “state”.
Most useful C functions and structures have lua FFI wrappers, sometimes with extra sugar.

The modules follow the Lua way [http://lua-users.org/wiki/ModuleDefinition], where the module interface is returned in a named table.

--- @module Count incoming queries
local counter = {}

function counter.init(module)
 counter.total = 0
 counter.last = 0
 counter.failed = 0
end

function counter.deinit(module)
 print('counted', counter.total, 'queries')
end

-- @function Run the q/s counter with given interval.
function counter.config(conf)
 -- We can use the scripting facilities here
 if counter.ev then event.cancel(counter.ev)
 event.recurrent(conf.interval, function ()
 print(counter.total - counter.last, 'q/s')
 counter.last = counter.total
 end)
end

return counter

The created module can be then loaded just like any other module, except it isn’t very useful since it
doesn’t provide any layer to capture events. The Lua module can however provide a processing layer, just
like its C counterpart.

-- Notice it isn't a function, but a table of functions
counter.layer = {
 begin = function (state, data)
 counter.total = counter.total + 1
 return state
 end,
 finish = function (state, req, answer)
 if state == kres.FAIL then
 counter.failed = counter.failed + 1
 end
 return state
 end
}

There is currently an additional “feature” in comparison to C layer functions:
some functions do not get called at all if state == kres.FAIL;
see docs for details: kr_layer_api.

Since the modules are like any other Lua modules, you can interact with them through the CLI and and any interface.

Tip

Module discovery: kres_modules. is prepended to the module name and lua search path is used on that.

Writing a module in C

As almost all the functions are optional, the minimal module looks like this:

#include "lib/module.h"
/* Convenience macro to declare module ABI. */
KR_MODULE_EXPORT(mymodule)

Let’s define an observer thread for the module as well. It’s going to be stub for the sake of brevity,
but you can for example create a condition, and notify the thread from query processing by declaring
module layer (see the Writing layers).

static void* observe(void *arg)
{
 /* ... do some observing ... */
}

int mymodule_init(struct kr_module *module)
{
 /* Create a thread and start it in the background. */
 pthread_t thr_id;
 int ret = pthread_create(&thr_id, NULL, &observe, NULL);
 if (ret != 0) {
 return kr_error(errno);
 }

 /* Keep it in the thread */
 module->data = thr_id;
 return kr_ok();
}

int mymodule_deinit(struct kr_module *module)
{
 /* ... signalize cancellation ... */
 void *res = NULL;
 pthread_t thr_id = (pthread_t) module->data;
 int ret = pthread_join(thr_id, res);
 if (ret != 0) {
 return kr_error(errno);
 }

 return kr_ok();
}

This example shows how a module can run in the background, this enables you to, for example, observe
and publish data about query resolution.

Configuring modules

There is a callback X_config() that you can implement, see hints module.

Exposing C module properties

A module can offer NULL-terminated list of properties, each property is essentially a callable with free-form JSON input/output.
JSON was chosen as an interchangeable format that doesn’t require any schema beforehand, so you can do two things - query the module properties
from external applications or between modules (e.g. statistics module can query cache module for memory usage).
JSON was chosen not because it’s the most efficient protocol, but because it’s easy to read and write and interface to outside world.

Note

The void *env is a generic module interface. Since we’re implementing daemon modules, the pointer can be cast to struct engine*.
This is guaranteed by the implemented API version (see Writing a module in C).

Here’s an example how a module can expose its property:

char* get_size(void *env, struct kr_module *m,
 const char *args)
{
 /* Get cache from engine. */
 struct engine *engine = env;
 struct kr_cache *cache = &engine->resolver.cache;
 /* Read item count */
 int count = (cache->api)->count(cache->db);
 char *result = NULL;
 asprintf(&result, "{ \"result\": %d }", count);

 return result;
}

struct kr_prop *cache_props(void)
{
 static struct kr_prop prop_list[] = {
 /* Callback, Name, Description */
 {&get_size, "get_size", "Return number of records."},
 {NULL, NULL, NULL}
 };
 return prop_list;
}

KR_MODULE_EXPORT(cache)

Once you load the module, you can call the module property from the interactive console.
Note: the JSON output will be transparently converted to Lua tables.

$ kresd
...
[system] started in interactive mode, type 'help()'
> modules.load('cached')
> cached.get_size()
[size] => 53

Special properties

If the module declares properties get or set, they can be used in the Lua interpreter as
regular tables.

Index

 A
 | C
 | E
 | H
 | K
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	array_next_count (C function)

 	array_std_free (C function)

 	
 	array_std_reserve (C function)

 	array_t (C function)

C

 	
 	cache.backends (C function)

 	cache.clear (C function)

 	cache.close (C function)

 	cache.count (C function)

 	cache.get (C function)

 	cache.max_ttl (C function)

 	
 	cache.min_ttl (C function)

 	cache.ns_tout (C function)

 	cache.open (C function)

 	cache.stats (C function)

 	cache_peek (C function)

 	cache_stash (C function)

E

 	
 	
 environment variable

 	cache.current_size

 	cache.current_storage

 	cache.size

 	cache.storage

 	env(table)

 	net.ipv4=true|false

 	net.ipv6=true|false

 	trust_anchors.hold_down_time=30*day

 	trust_anchors.keep_removed=0

 	trust_anchors.refresh_time=nil

 	worker.count

 	worker.id

 	worker.pid

 	
 	event.after (C function)

 	event.cancel (C function)

 	event.recurrent (C function)

 	event.reschedule (C function)

 	event.socket (C function)

H

 	
 	hints.add_hosts (C function)

 	hints.config (C function)

 	hints.del (C function)

 	hints.get (C function)

 	hints.root (C function)

 	
 	hints.root_file (C function)

 	hints.set (C function)

 	hints.ttl (C function)

 	hints.use_nodata (C function)

 	hostname (C function)

K

 	
 	KEY_COVERING_RRSIG (C function)

 	KEY_FLAG_RANK (C function)

 	knot_dname_lf2wire (C function)

 	kr_bitcmp (C function)

 	kr_cache_clear (C function)

 	kr_cache_close (C function)

 	kr_cache_closest_apex (C function)

 	kr_cache_commit (C function)

 	kr_cache_insert_rr (C function)

 	kr_cache_is_open (C function)

 	kr_cache_make_checkpoint (C function)

 	kr_cache_match (C function)

 	kr_cache_materialize (C function)

 	kr_cache_open (C function)

 	kr_cache_peek_exact (C function)

 	kr_cache_remove (C function)

 	kr_cache_remove_subtree (C function)

 	kr_cache_ttl (C function)

 	kr_dname_lf (C function)

 	kr_dname_text (C function)

 	kr_error (C function)

 	kr_family_len (C function)

 	kr_inaddr (C function)

 	kr_inaddr_family (C function)

 	kr_inaddr_len (C function)

 	kr_inaddr_port (C function)

 	kr_inaddr_set_port (C function)

 	kr_inaddr_str (C function)

 	kr_memreserve (C function)

 	kr_module_call (C function)

 	kr_module_get_embedded (C function)

 	kr_module_load (C function)

 	kr_module_unload (C function)

 	kr_now (C function)

 	kr_nsrep_copy_set (C function)

 	kr_nsrep_elect (C function)

 	kr_nsrep_elect_addr (C function)

 	kr_nsrep_set (C function)

 	kr_nsrep_sort (C function)

 	kr_nsrep_update_rep (C function)

 	kr_nsrep_update_rtt (C function)

 	kr_ntop_str (C function)

 	kr_pkt_clear_payload (C function)

 	kr_pkt_has_dnssec (C function)

 	kr_pkt_make_auth_header (C function)

 	kr_pkt_put (C function)

 	kr_pkt_qclass (C function)

 	kr_pkt_qtype (C function)

 	kr_pkt_recycle (C function)

 	kr_pkt_text (C function)

 	KR_PRINTF (C function), [1]

 	kr_qflags_clear (C function)

 	kr_qflags_set (C function)

 	kr_rand_bytes (C function)

 	kr_rand_coin (C function)

 	kr_rank_check (C function)

 	
 	kr_rank_set (C function)

 	kr_rank_test (C function)

 	kr_ranked_rrarray_add (C function)

 	kr_ranked_rrarray_set_wire (C function)

 	kr_resolve_begin (C function)

 	kr_resolve_checkout (C function)

 	kr_resolve_consume (C function)

 	kr_resolve_finish (C function)

 	kr_resolve_plan (C function)

 	kr_resolve_pool (C function)

 	kr_resolve_produce (C function)

 	kr_rnd_buffered (C function)

 	kr_rplan_deinit (C function)

 	kr_rplan_empty (C function)

 	kr_rplan_find_resolved (C function)

 	kr_rplan_init (C function)

 	kr_rplan_last (C function)

 	kr_rplan_pop (C function)

 	kr_rplan_push (C function)

 	kr_rplan_push_empty (C function)

 	kr_rplan_resolved (C function)

 	kr_rplan_satisfies (C function)

 	kr_rrkey (C function)

 	kr_rrset_init (C function)

 	kr_rrset_text (C function)

 	kr_rrset_type_maysig (C function)

 	kr_rrsig_sig_expiration (C function)

 	kr_rrsig_sig_inception (C function)

 	kr_rrsig_type_covered (C function)

 	kr_rrtype_text (C function)

 	kr_sockaddr_cmp (C function)

 	kr_sockaddr_len (C function)

 	kr_straddr (C function)

 	kr_straddr_family (C function)

 	kr_straddr_join (C function)

 	kr_straddr_socket (C function)

 	kr_straddr_split (C function)

 	kr_straddr_subnet (C function)

 	kr_strcatdup (C function)

 	kr_strptime_diff (C function)

 	kr_unpack_cache_key (C function)

 	kr_uv_free_cb (C function)

 	kr_verbose_set (C function)

 	kr_zonecut_add (C function)

 	kr_zonecut_copy (C function)

 	kr_zonecut_copy_trust (C function)

 	kr_zonecut_deinit (C function)

 	kr_zonecut_del (C function)

 	kr_zonecut_del_all (C function)

 	kr_zonecut_find (C function)

 	kr_zonecut_find_cached (C function)

 	kr_zonecut_init (C function)

 	kr_zonecut_is_empty (C function)

 	kr_zonecut_move (C function)

 	kr_zonecut_set (C function)

 	kr_zonecut_set_sbelt (C function)

L

 	
 	lru_t (C function), [1]

M

 	
 	map (C function)

 	map_clear (C function)

 	map_contains (C function)

 	map_del (C function)

 	map_get (C function)

 	map_make (C function)

 	
 	map_set (C function)

 	map_walk_prefixed (C function)

 	mode (C function)

 	modules.list (C function)

 	modules.load (C function)

 	modules.unload (C function)

N

 	
 	net.bufsize (C function)

 	net.close (C function)

 	net.interfaces (C function)

 	net.list (C function)

 	net.listen (C function)

 	
 	net.outgoing_v4 (C function)

 	net.tcp_pipeline (C function)

 	net.tls (C function)

 	net.tls_padding (C function)

 	net.tls_sticket_secret (C function)

 	net.tls_sticket_secret_file (C function)

P

 	
 	pack_clone (C function)

 	pack_last (C function)

 	pack_obj_del (C function)

 	pack_obj_find (C function)

 	pack_obj_len (C function)

 	pack_obj_next (C function)

 	pack_obj_push (C function)

 	pack_obj_val (C function)

 	
 	package_version (C function)

 	policy.add (C function)

 	policy.del (C function)

 	policy.rpz (C function)

 	policy.slice (C function)

 	policy.slice_randomize_psl (C function)

 	policy.suffix_common (C function)

 	policy.todnames (C function)

 	predict.config (C function)

Q

 	
 	qr_task_on_send (C function)

R

 	
 	reorder_RR (C function)

 	resolve (C function)

 	
 RFC

 	RFC 1034, [1]

 	RFC 1035, [1], [2]

 	RFC 3986

 	RFC 4035

 	RFC 5001

 	RFC 5011, [1], [2]

 	RFC 5077

 	RFC 6147

 	RFC 6761

 	RFC 6761#section-6

 	RFC 6891

 	RFC 7646

 	RFC 7706

 	RFC 7828

 	RFC 7858, [1], [2], [3]

 	RFC 8109

 	RFC 8145#section-5

 	RFC 8198

 	RFC 8484, [1], [2]

S

 	
 	stats.clear_frequent (C function)

 	stats.frequent (C function)

 	stats.get (C function)

 	
 	stats.list (C function)

 	stats.set (C function)

 	stats.upstreams (C function)

 	strcmp_p (C function)

T

 	
 	time_diff (C function)

 	trie_apply (C function)

 	trie_clear (C function)

 	trie_create (C function)

 	trie_del (C function)

 	trie_del_first (C function)

 	trie_free (C function)

 	trie_get_first (C function)

 	trie_get_ins (C function)

 	trie_get_leq (C function)

 	trie_get_try (C function)

 	
 	trie_it_begin (C function)

 	trie_it_finished (C function)

 	trie_it_free (C function)

 	trie_it_key (C function)

 	trie_it_next (C function)

 	trie_it_val (C function)

 	trie_weight (C function)

 	trust_anchors.add (C function)

 	trust_anchors.add_file (C function)

 	trust_anchors.remove (C function)

 	trust_anchors.set_insecure (C function)

 	trust_anchors.summary (C function)

U

 	
 	user (C function)

V

 	
 	verbose (C function)

 	
 	view:addr (C function)

 	view:tsig (C function)

W

 	
 	worker.coroutine (C function)

 	worker.sleep (C function)

 	worker.stats (C function)

 	worker_add_tcp_connected (C function)

 	worker_deinit (C function)

 	worker_del_tcp_connected (C function)

 	worker_del_tcp_waiting (C function)

 	worker_end_tcp (C function)

 	worker_init (C function)

 	worker_request_get_source_session (C function)

 	worker_request_set_source_session (C function)

 	worker_resolve_exec (C function)

 	worker_resolve_mk_pkt (C function)

 	worker_resolve_start (C function)

 	worker_submit (C function)

 	
 	worker_task_complete (C function)

 	worker_task_creation_time (C function)

 	worker_task_finalize (C function)

 	worker_task_finished (C function)

 	worker_task_get_pktbuf (C function)

 	worker_task_get_request (C function)

 	worker_task_numrefs (C function)

 	worker_task_pkt_get_msgid (C function)

 	worker_task_pkt_set_msgid (C function)

 	worker_task_ref (C function)

 	worker_task_request (C function)

 	worker_task_step (C function)

 	worker_task_subreq_finalize (C function)

 	worker_task_timeout_inc (C function)

 	worker_task_unref (C function)

 _static/comment-bright.png

_images/resolution.png
Driver [I_ayer;

input query call produce layers

| generated query
state => CONSUME

O ‘ Hogs => AWAT_CUT

Find zone cut J’ |
(cached)
caller |

satisfy query

does 1/0 O call consume layers
state => DONE

|
return answer: ‘ Plags => RESOLVED

—O

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Knot Resolver

 		
 Quick Reference

 		
 Daemon

 		
 Configuration

 		
 Configuration example

 		
 Configuration syntax

 		
 Configuration reference

 		
 CLI interface

 		
 Verbose output

 		
 Control sockets

 		
 Utilizing multiple CPUs

 		
 Cache Garbage Collector

 		
 Using CLI tools

 		
 Code reference

 		
 Modules

 		
 Static hints

 		
 Examples

 		
 Properties

 		
 Statistics collector

 		
 Properties

 		
 Built-in statistics

 		
 Query policies

 		
 Filters

 		
 Actions

 		
 Forwarding over TLS protocol (DNS-over-TLS)

 		
 Policy examples

 		
 Replacing part of the DNS tree

 		
 Additional properties

 		
 Views and ACLs

 		
 Example configuration

 		
 Rule order

 		
 Properties

 		
 Prefetching records

 		
 Example configuration

 		
 Exported metrics

 		
 Properties

 		
 HTTP/2 services

 		
 Example configuration

 		
 Configuring TLS

 		
 Built-in services

 		
 Prometheus metrics endpoint

 		
 Tracing requests

 		
 How to expose custom services over HTTP

 		
 How to expose custom RESTful services

 		
 Dependencies

 		
 DNS-over-HTTP (DoH)

 		
 DoH support in Knot Resolver

 		
 Normal HTTP proxy

 		
 HTTP proxy with DoH support

 		
 Client configuration

 		
 DNS Application Firewall

 		
 Example configuration

 		
 Web interface

 		
 RESTful interface

 		
 Rebinding protection

 		
 Graphite module

 		
 Example configuration

 		
 Dependencies

 		
 Etcd module

 		
 Example configuration

 		
 Dependencies

 		
 DNS64

 		
 Example configuration

 		
 Renumber

 		
 Example configuration

 		
 DNSSEC validation failure logging

 		
 Name Server Identifier (NSID)

 		
 Workarounds

 		
 Running

 		
 Dnstap

 		
 Configuration

 		
 Signaling Trust Anchor Knowledge in DNSSEC

 		
 Sentinel for Detecting Trusted Root Keys

 		
 Priming module

 		
 System time skew detector

 		
 Detect discontinuous jumps in the system time

 		
 Root on loopback (RFC 7706)

 		
 Cache prefilling

 		
 Dependencies

 		
 Serve stale

 		
 Running

 		
 EDNS keepalive

 		
 Experimental DNS-over-TLS Auto-discovery

 		
 How it works

 		
 Generating NS target names

 		
 Example configuration

 		
 Caveats

 		
 Dependencies

 		
 Refuse queries without RD bit

 		
 Upgrading

 		
 4.x to 4.2.1+

 		
 Users

 		
 3.x to 4.x

 		
 Users

 		
 Packagers & Developers

 		
 2.x to 3.x

 		
 Users

 		
 Packagers & Developers

 		
 Release notes

 		
 Knot Resolver 4.2.1 (2019-09-26)

 		
 Bugfixes

 		
 Improvements

 		
 Knot Resolver 4.2.0 (2019-08-05)

 		
 Improvements

 		
 Bugfixes

 		
 Module API changes

 		
 Knot Resolver 4.1.0 (2019-07-10)

 		
 Security

 		
 Improvements

 		
 Bugfixes

 		
 Module API changes

 		
 Knot Resolver 4.0.0 (2019-04-18)

 		
 Incompatible changes

 		
 Improvements

 		
 Bugfixes

 		
 Module API changes

 		
 Knot Resolver 3.2.1 (2019-01-10)

 		
 Bugfixes

 		
 Improvements

 		
 Knot Resolver 3.2.0 (2018-12-17)

 		
 New features

 		
 Bugfixes

 		
 Improvements

 		
 Module API changes

 		
 Knot Resolver 3.1.0 (2018-11-02)

 		
 Incompatible changes

 		
 Improvements

 		
 Bugfixes

 		
 Knot Resolver 3.0.0 (2018-08-20)

 		
 Incompatible changes

 		
 Bugfixes

 		
 Improvements

 		
 Knot Resolver 2.4.1 (2018-08-02)

 		
 Security

 		
 Bugfixes

 		
 Knot Resolver 2.4.0 (2018-07-03)

 		
 Incompatible changes

 		
 Security

 		
 New features

 		
 Bugfixes

 		
 Improvements

 		
 Knot Resolver 2.3.0 (2018-04-23)

 		
 Security

 		
 New features

 		
 Bugfixes

 		
 Improvements

 		
 Knot Resolver 2.2.0 (2018-03-28)

 		
 New features

 		
 Bugfixes

 		
 Knot Resolver 2.1.1 (2018-02-23)

 		
 Bugfixes

 		
 Knot Resolver 2.1.0 (2018-02-16)

 		
 Incompatible changes

 		
 Bugfixes

 		
 Knot Resolver 2.0.0 (2018-01-31)

 		
 Incompatible changes

 		
 New features

 		
 Bugfixes

 		
 Knot Resolver 1.5.3 (2018-01-23)

 		
 Bugfixes

 		
 Knot Resolver 1.5.2 (2018-01-22)

 		
 Security

 		
 Bugfixes

 		
 Knot Resolver 1.5.1 (2017-12-12)

 		
 Incompatible changes

 		
 Bugfixes

 		
 Improvements

 		
 Knot Resolver 1.5.0 (2017-11-02)

 		
 Bugfixes

 		
 Improvements

 		
 Knot Resolver 1.99.1-alpha (2017-10-26)

 		
 Improvements

 		
 Regressions

 		
 Knot Resolver 1.4.0 (2017-09-22)

 		
 Incompatible changes

 		
 Bugfixes

 		
 Improvements

 		
 Knot Resolver 1.3.3 (2017-08-09)

 		
 Security

 		
 Bugfixes

 		
 Improvements

 		
 Knot Resolver 1.3.2 (2017-07-28)

 		
 Security

 		
 Bugfixes

 		
 Improvements

 		
 Knot Resolver 1.3.1 (2017-06-23)

 		
 Bugfixes

 		
 Knot Resolver 1.3.0 (2017-06-13)

 		
 Security

 		
 Improvements

 		
 Bugfixes

 		
 Knot Resolver 1.2.6 (2017-04-24)

 		
 Security

 		
 Improvements

 		
 Bugfixes

 		
 Knot Resolver 1.2.5 (2017-04-05)

 		
 Security

 		
 Improvements

 		
 Bugfixes

 		
 Knot Resolver 1.2.4 (2017-03-09)

 		
 Security

 		
 Improvements

 		
 Bugfixes

 		
 Knot Resolver 1.2.3 (2017-02-23)

 		
 Bugfixes

 		
 Knot Resolver 1.2.2 (2017-02-10)

 		
 Bugfixes:

 		
 Testing:

 		
 Knot Resolver 1.2.1 (2017-02-01)

 		
 Security:

 		
 Documentation

 		
 Bugfixes:

 		
 Knot Resolver 1.2.0 (2017-01-24)

 		
 Security:

 		
 Improvements:

 		
 Bugfixes:

 		
 Miscellaneous:

 		
 Knot Resolver 1.1.1 (2016-08-24)

 		
 Bugfixes:

 		
 Improvements:

 		
 Knot Resolver 1.1.0 (2016-08-12)

 		
 Improvements:

 		
 Knot Resolver 1.0.0 (2016-05-30)

 		
 Initial release:

 		
 Building from sources

 		
 Dependencies

 		
 Packaged dependencies

 		
 Compilation

 		
 Build options

 		
 Customizing compiler flags

 		
 Tests

 		
 HTML Documentation

 		
 Tarball

 		
 Packaging

 		
 Systemd

 		
 Trust anchors

 		
 Docker image

 		
 Knot Resolver library

 		
 Requirements

 		
 For users

 		
 For developers

 		
 Writing layers

 		
 APIs in Lua

 		
 Elementary types and constants

 		
 Working with domain names

 		
 Working with resource records

 		
 Working with packets

 		
 Working with requests

 		
 Significant Lua API changes

 		
 API reference

 		
 Name resolution

 		
 Cache

 		
 Nameservers

 		
 Modules

 		
 Utilities

 		
 Generics library

 		
 Modules API reference

 		
 Supported languages

 		
 The anatomy of an extension

 		
 Writing a module in Lua

 		
 Writing a module in C

 		
 Configuring modules

 		
 Exposing C module properties

 		
 Special properties

_static/up-pressed.png

_static/up.png

_static/plus.png

