Knot Resolver
Release 6.0.0a1

CZ.NIC Labs

Jun 05, 2023

10

11

12

13

14

15

16

17

18

19

20

21

22

Installation

Startup

Configuration

Configuration Overview
Configuration schema
Listening on network interfaces
Advanced configuration (Lua)
Systemd

Manual

Docker

Advanced

HTTP API

kresctl utility

Upgrading to 6.0.0 from 5.x.x
Upgrading

Release notes

System architecture

Building from sources

Knot Resolver library
Modules API reference
Worker API reference

Custom HTTP services

GETTING STARTED

11

13

15

17

99
101
103
105
109
113
117
119
127
159
163
171
243
249

253

23 Indices and tables 257
Python Module Index 259

Index 261

Knot Resolver, Release 6.0.0a1

Welcome to Knot Resolver’s documentation! Knot Resolver is an opensource implementation of a caching validating
DNS resolver. Modular architecture keeps the core tiny and efficient, and it also provides a state-machine like API for
extensions.

If you are a new user, please start with chapter for getting started.

GETTING STARTED 1

Knot Resolver, Release 6.0.0a1

2 GETTING STARTED

CHAPTER
ONE

INSTALLATION

As a first step, configure your system to use upstream repositories which have the latest version of Knot Resolver.
Follow the instructions below for your distribution.

Note: Please note that the packages available in distribution repositories of Debian and Ubuntu are outdated. Make
sure to follow these steps to use our upstream repositories.

Debian/Ubuntu

wget https://secure.nic.cz/files/knot-resolver/knot-resolver-release.deb
sudo dpkg -i knot-resolver-release.deb

sudo apt update

sudo apt install -y knot-resolver

© A A A

CentOS 7+

$ sudo yum install -y epel-release
$ sudo yum install -y knot-resolver

Fedora

$ sudo dnf install -y knot-resolver

Arch Linux

$ sudo pacman -S knot-resolver

openSUSE Leap/Tumbleweed
Add the OBS package repository home:CZ-NIC:knot-resolver-latest to your system.

Note: If for some reason you need to install Knot Resolver from source, check out building from sources documen-
tation for developers.

https://en.opensuse.org/Portal:Build_Service
https://software.opensuse.org/download.html?project=home%3ACZ-NIC%3Aknot-resolver-latest&package=knot-resolver

Knot Resolver, Release 6.0.0a1

4 Chapter 1. Installation

CHAPTER
TWO

STARTUP

The main way to run Knot Resolver is to use provided integration with systemd.

$ sudo systemctl start knot-resolver.service

See logs and status of running instance with systemctl status knot-resolver.service command. For more
information about systemd integration see man knot-resolver.systemd.

Warning: knot-resolver.service is not enabled by default, thus Knot Resolver won’t start automatically after
reboot. To start and enable service in one command use systemctl enable --now knot-resolver.service

Unfortunately, for some cases (typically Docker and minimalistic systems), systemd is not available, therefore it is not
possible to use knot-resolver.service. If you have this problem, look at usage without systemd section.

Note: If for some reason you need to use Knot Resolver as it was before version 6, check out usage without the manager
Otherwise, it is recommended to stick to this chapter.

2.1 First DNS query

After installation and first startup, Knot Resolver’s default configuration accepts queries on loopback interface. This
allows you to test that the installation and service startup were successful before continuing with configuration.

For instance, you can use DNS lookup utility kdig to send DNS queries. The kdig command is provided by following
packages:

Distribution | package with kdig
Arch knot

CentOS knot-utils

Debian knot-dnsutils
Fedora knot-utils
OpenSUSE | knot-utils

Ubuntu knot-dnsutils

The following query should return list of Root Name Servers:

Knot Resolver, Release 6.0.0a1

$ kdig +short @localhost . NS
a.root-servers.net.

m.root-servers.net.

6 Chapter 2. Startup

CHAPTER
THREE

CONFIGURATION

Easiest way to configure Knot Resolver is to put YAML configuration in /etc/knot-resolver/config.yml file.

You can start exploring the configuration by continuing in this chapter or look at the complete configuration documen-
tation.

* Listening on network interfaces
* Example: Internal Resolver

* Example: ISP Resolver

» Example: Personal Resolver

Complete examples of configuration files can be found here. Examples are also installed as documentation files, typ-
ically in /usr/share/doc/knot-resolver/examples/ directory (location may be different based on your Linux
distribution).

Tip: You can use kresctl utility to validate your configuration before pushing it into the running resolver. It should
help prevent many typos in the configuration.

$ kresctl validate /etc/knot-resolver/config.yml

If you update the configuration file while Knot Resolver is running, you can force the resolver to reload it by invoking
a systemd reload command.

$ systemctl reload knot-resolver.service

Note: Reloading configuration can fail even when your configuration is valid, because some options cannot be
changed while running. You can always find an explanation of the error in the log accesed by the journalctl -eu
knot-resolver command.

https://gitlab.nic.cz/knot/knot-resolver/tree/master/etc/config

Knot Resolver, Release 6.0.0a1

3.1 Listening on network interfaces

The first thing you will probably want to configure are the network interfaces to listen to. The following example
instructs the resolver to receive standard unencrypted DNS queries on 192.0.2.1 and 2001:db8:: 1 IP addresses.
Encrypted DNS queries using DNS-over-TLS protocol are accepted on all IP addresses of eth® network interface,
TCP port 853.

network:
listen:
- interface: ['192.0.2.1"', '2001:db8::1'] # port 53 is default
- interface: 'ethO'
port: 853
kind: 'dot' # DNS-over-TLS

For more details look at the network configuration.

Warning: On machines with multiple IP addresses on the same interface avoid listening on wildcards 0.0.0.0
or ::. Knot Resolver could answer from different IP addresses if the network address ranges overlap, and clients
would refuse such a response.

3.2 Example: Internal Resolver

This is an example of typical configuration for company-internal resolver which is not accessible from outside of
company network.

3.2.1 Internal-only domains

An internal-only domain is a domain not accessible from the public Internet. In order to resolve internal-only domains
a query policy has to be added to forward queries to a correct internal server. This configuration will forward two listed
domains to a DNS server with IP address 192.0.2.44.

policy:

See chapter Replacing part of the DNS tree for more details.

3.3 Example: ISP Resolver

The following configuration is typical for Internet Service Providers who offer DNS resolver service to their own
clients in their own network. Please note that running a public DNS resolver is more complicated and not covered by
this example.

8 Chapter 3. Configuration

Knot Resolver, Release 6.0.0a1

3.3.1 Limiting client access

With exception of public resolvers, a DNS resolver should resolve only queries sent by clients in its own network. This
restriction limits attack surface on the resolver itself and also for the rest of the Internet.

In a situation where access to DNS resolver is not limited using IP firewall, you can implement access restrictions
which combines query source information with policy rules. Following configuration allows only queries from clients
in subnet 192.0.2.0/24 and refuses all the rest.

view:

policy:

3.3.2 TLS server configuration

Today clients are demanding secure transport for DNS queries between client machine and DNS resolver. The recom-
mended way to achieve this is to start DNS-over-TLS server and accept also encrypted queries.

First step is to enable TLS on listening interfaces:

network:
listen:
- interface: ['192.0.2.1', '2001:db8::1"]
kind: 'dot' # DNS-over-TLS, port 853 is default

By default a self-signed certificate is generated. Second step is then obtaining and configuring your own TLS certificates
signed by a trusted CA. Once the certificate was obtained a path to certificate files can be specified:

network:
tls:
cert-file: '/etc/knot-resolver/server-cert.pem'
key-file: '/etc/knot-resolver/server-key.pem'

3.3.3 Mandatory domain blocking

Some jurisdictions mandate blocking access to certain domains. This can be achieved using following policy rule:

policy:

3.4 Example: Personal Resolver

DNS queries can be used to gather data about user behavior. Knot Resolver can be configured to forward DNS queries
elsewhere, and to protect them from eavesdropping by TLS encryption.

Warning: Latest research has proven that encrypting DNS traffic is not sufficient to protect privacy of users. For
this reason we recommend all users to use full VPN instead of encrypting just DNS queries. Following configuration
is provided only for users who cannot encrypt all their traffic. For more information please see following articles:

e Simran Patil and Nikita Borisov. 2019. What can you learn from an IP? (slides, the article itself)

e Bert Hubert. 2019. Centralised DoH is bad for Privacy, in 2019 and beyond

3.4. Example: Personal Resolver 9

https://irtf.org/anrw/2019/slides-anrw19-final44.pdf
https://dl.acm.org/authorize?N687437
https://labs.ripe.net/Members/bert_hubert/centralised-doh-is-bad-for-privacy-in-2019-and-beyond

Knot Resolver, Release 6.0.0a1

3.4.1 Forwarding over TLS protocol (DNS-over-TLS)

Forwarding over TLS protocol protects DNS queries sent out by resolver. It can be configured using TLS forward-
ing which provides methods for authentication. .. It can be configured using policy. TLS_FORWARD which provides
methods for authentication. See list of DNS Privacy Test Servers supporting DNS-over-TLS to test your configuration.

Read more on Forwarding over TLS protocol (DNS-over-TLS).

3.4.2 Forwarding to multiple targets

With the use of slice function, it is possible to split the .. With the use of policy.slice function, it is possible to
split the entire DN'S namespace into distinct “slices”. When used in conjunction with 7LS forwarding, it’s possible to
forward different queries to different .. policy.TLS_FORWARD, it’s possible to forward different queries to different
remote resolvers. As a result no single remote resolver will get complete list of all queries performed by this client.

Warning: Beware that this method has not been scientifically tested and there might be types of attacks which
will allow remote resolvers to infer more information about the client. Again: If possible encrypt all your traffic
and not just DNS queries!

policy:
TODO

3.4.3 Non-persistent cache

Knot Resolver’s cache contains data clients queried for. If you are concerned about attackers who are able to get access
to your computer system in power-off state and your storage device is not secured by encryption you can move the cache
to tmpfs. See chapter Persistence.

10 Chapter 3. Configuration

https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+Test+Servers
https://en.wikipedia.org/wiki/Tmpfs

CHAPTER
FOUR

CONFIGURATION OVERVIEW

Configuration file is by default named /etc/knot-resolver/config.yml. Different configuration file can be loaded
by using command line option -c¢ / --config.

4.1 Syntax

The configuration file uses YAML format version 1.1. To quickly learn about the format, you can have a look at Learn
YAML in Y minutes.

4.2 Schema

The configuration has to pass a validation step before being used. The validation mainly checks for conformance to our
configuration-schema.

Tip: Whenever a configuration is loaded and the validation fails, we attempt to log a detailed error message explaining
what the problem was. For example, it could look like the following:

If you happen to find a rejected configuration with unhelpful or confusing error message, please report it as a bug.

Tip: An easy way to see the complete configuration structure is to look at the JSON schema represention. The raw
JSON schema is available at this link (valid only for the version of resolver this documentation was generated for). For
the schema readability, some graphical visualizer can be used, for example this one.

11

https://yaml.org/spec/1.1/
https://learnxinyminutes.com/docs/yaml/
https://learnxinyminutes.com/docs/yaml/
https://json-schema.org/
_static/config.schema.json
https://json-schema.app/

Knot Resolver, Release 6.0.0a1

12 Chapter 4. Configuration Overview

CHAPTER
FIVE

CONFIGURATION SCHEMA

The configuration schema describes the structure of accepted configuration files (or objects via the API). While origi-
nally specified in Python source code, it can be visualized as a JSON schema.

5.1 Getting the JSON schema

1. The JSON schema can be obtained from a running Resolver by sending a HTTP GET request to the path /schema
on the management socket (by default a Unix socket at /var/run/knot-resolver/manager.sock).

2. Thekresctl schemacommand outputs the schema of the currently installed version as well. It does not require
a running resolver.

3. JSON schema for the most recent Knot Resolver version can be downloaded here.

5.2 Validating you configuration

As mentioned above, the JSON schema is NOT used to validate the configuration in the Knot Resolver. It’s the other
way around, the validation process can generate JSON schema that can help you understand the configuration structure.
Some validation steps are however dynamic (for example resolving of interface names) and can not be expressed using
JSON schema and cannot be even completed without running full Resolver.

Note: When using the API to change configuration in runtime, your change can be rejected by the validation step
even though Knot Resolver would start just fine with the given changed configuration. Some validation steps within
the Resolver are dynamic and they are dependent on both your previous configuration and the new one. For example,
if you try to change the management socket, the validation will fail even though the new provided address is perfectly
valid. Chaning the management socket while running is not supported.

Most of the validation is however static and you can use the kresctl validate command to check your configuration
file for most errors before actually running the Resolver.

13

https://json-schema.org/
_static/config.schema.json

Knot Resolver, Release 6.0.0a1

5.3 Interactive visualization

The following visualization is interactive and offers good overview of the configuration structure.

5.4 Text-based configuration schema description

Following, you can find the JSON schema flattened textual representation. It’s not meant to be read top-to-bottom,
however it can be used as a quick lookup reference.

14 Chapter 5. Configuration schema

CHAPTER
SIX

LISTENING ON NETWORK INTERFACES

The first thing you will probably need to configure are the network interfaces to listen to.

The following configuration instructs Knot Resolver to receive standard unencrypted DNS queries on IP addresses
192.0.2.1 and 2001:db8::1. Encrypted DNS queries are accepted using DNS-over-TLS protocol on all IP addresses
configured on network interface eth0, TCP port 853.

YAML

network:
listen:
- interface: ['192.0.2.1"', '2001:db8::1'] # unencrypted DNS on port 53 is default
- interface: 'eth0'
port: 853
kind: 'dot'

Lua

Network interfaces to listen on and supported protocols are configured using net. 1isten() function.

-- unencrypted DNS on port 53 is default
net.listen('192.0.2.1")
net.listen('2001:db8::1")
net.listen(net.eth®, 853, { kind = "tls' })

Warning: On machines with multiple IP addresses on the same interface avoid listening on wildcards 0.0.0.0
or ::. Knot Resolver could answer from different IP addresses if the network address ranges overlap, and clients
would refuse such a response.

15

Knot Resolver, Release 6.0.0a1

16 Chapter 6. Listening on network interfaces

CHAPTER
SEVEN

ADVANCED CONFIGURATION (LUA)

Knot Resolver can be configured declaratively by using YAML files or YAML/JSON HTTP API. However, there
is another option. The actual worker processes (the kresd executable) speaks a different configuration language, it
internally uses the Lua runtime and the respective programming language.

Essentially, the declarative configuration is only used for validation and as an external interface. After validation, a
Lua configuration is generated and passed into individual kresd instances. You can see the generated configuration
files within the Resolver’s working directory or you can manually run the conversion of declarative configuration with
the kresctl convert command.

Warning: While there are no plans of ever removing the Lua configuration, we do not guarantee absence of
backwards incompatible changes. Starting with Knot Resolver version 6 and later, we consider the Lua interface
internal and a subject to change. While we don’t have any breaking changes planned for the foreseeable future, they
might come.

Therefore, use this only when you don’t have any other option. And please let us know about it and we might
try to accomodate your usecase in the declarative configuration.

7.1 Syntax

The configuration file syntax allows you to specify different kinds of data:
* group.option = 123456
e group.option = "string value"
e group.command (123456, "string value")
e group.command({ keyl = "valuel", key2 = 222, key3 = "third value" })
* globalcommand(a_parameter_1, a_parameter_2, a_parameter_3, etc)
* -- any text after -- sign is ignored till end of line

Following configuration file snippet starts listening for unencrypted and also encrypted DNS queries on IP address
192.0.2.1, and sets cache size.

-- this is a comment: listen for unencrypted queries
net.listen('192.0.2.1")

-- another comment: listen for queries encrypted using TLS on port 853
net.listen('192.0.2.1", 853, { kind = 'tls' })

-- 10 MB cache is suitable for a very small deployment

cache.size = 10 * MB

17

Knot Resolver, Release 6.0.0a1

Tip: When copy&pasting examples from this manual please pay close attention to brackets and also line ordering -
order of lines matters.

The configuration language is in fact Lua script, so you can use full power of this programming language. See article
Learn Lua in 15 minutes for a syntax overview.

When you modify configuration file on disk restart resolver process to get changes into effect. See chapter Zero-
downtime restarts if even short outages are not acceptable for your deployment.

7.2 Documentation Conventions

Besides text configuration file, Knot Resolver also supports interactive and dynamic configuration using scripts or
external systems, which is described in chapter Run-time reconfiguration. Through this manual we present examples
for both usage types - static configuration in a text file (see above) and also the interactive mode.

The interactive prompt is denoted by >, so all examples starting with > character are transcripts of user (or script)
interaction with Knot Resolver and resolver’s responses. For example:

> -- this is a comment entered into interactive prompt

> -- comments have no effect here

> -- the next line shows a command entered interactively and its output

> log_level()

'notice'

> -- the previous line without > character is output from log_level() command

Following example demonstrates how to interactively list all currently loaded modules, and includes multi-line output:

> modules.list()

{
'iterate',
'validate',
'cache’',
'"ta_update',
'ta_signal_query"',
'policy’,
'priming',
'detect_time_skew',
'detect_time_jump',
'ta_sentinel’,
'edns_keepalive',
'refuse_nord',
'watchdog',

Before we dive into configuring features, let us explain modularization basics.

18 Chapter 7. Advanced configuration (Lua)

http://tylerneylon.com/a/learn-lua/

Knot Resolver, Release 6.0.0a1

7.3 Modules

Knot Resolver functionality consists of separate modules, which allow you to mix-and-match features you need without
slowing down operation by features you do not use.

This practically means that you need to load module before using features contained in it, for example:

-- load module and make dnstap features available
modules.load('dnstap')
-- configure dnstap features
dnstap.config({
socket_path = "/tmp/dnstap.sock"
19)

Obviously ordering matters, so you have to load module first and configure it after it is loaded.
Here is full reference manual for module configuration:

modules.list()

Returns
List of loaded modules.

modules.load(name)

Parameters
name (string) — Module name, e.g. “hints”

Returns
true if modules was (or already is) loaded, error otherwise.

Load a module by name.

modules.unload (name)

Parameters
name (string) — Module name, e.g. “detect_time_jump”

Returns
true if modules was unloaded, error otherwise.

Unload a module by name. This is useful for unloading modules loaded by default, mainly for debugging pur-
poses.

Now you know what configuration file to modify, how to read examples and what modules are so you are ready for a
real configuration work!

7.4 Networking and protocols

This section describes configuration of network interfaces and protocols. Please keep in mind that DNS resolvers act
as DNS server and DNS client at the same time, and that these roles require different configuration.

This picture illustrates different actors involved DNS resolution process, supported protocols, and clarifies what we
call server configuration and client configuration.

Attribution: Icons by Bernar Novalyi from the Noun Project

For resolver’s clients the resolver itself acts as a DNS server.

7.3. Modules 19

Knot Resolver, Release 6.0.0a1

After receiving a query the resolver will attempt to find answer in its cache. If the data requested by resolver’s client is
not available in resolver’s cache (so-called cache-miss) the resolver will attempt to obtain the data from servers upstream
(closer to the source of information), so at this point the resolver itself acts like a DNS client and will send DNS query
to other servers.

By default the Knot Resolver works in recursive mode, i.e. the resolver will contact authoritative servers on the Internet.
Optionally it can be configured in forwarding mode, where cache-miss queries are forwarded to another DNS resolver
for processing.

7.4.1 Server (communication with clients)

Addresses and services

Addresses, ports, protocols, and API calls available for clients communicating with resolver are configured using net.
listen().

First you need to decide what service should be available on given IP address + port combination.

Protocol/service net.listen kind
DNS (unencrypted UDP+TCP, RFC 1034) dns

DNS (unencrypted UDP, using XDP Linux API) | xdp
DNS-over-TLS (DoT) tls
DNS-over-HTTPS (DoH) doh2

Web management webmgmt
Control socket control
Legacy DNS-over-HTTPS (DoH) doh_legacy

Note: By default, unencrypted DNS and DNS-over-TLS are configured to listen on localhost.

Control sockets are created either in /run/knot-resolver/control/ (when using systemd) or $PWD/control/.

net. listen(addresses[, port =53, { kind = 'dns’, freebind = false }])

Returns
true if port is bound, an error otherwise

Listen on addresses; port and flags are optional. The addresses can be specified as a string or device. Port 853
implies kind = 'tls' but it is always better to be explicit. Freebind allows binding to a non-local or not yet
available address.

Network protocol Configuration command

DNS (UDP+TCP, RFC 1034) | net.listen('192.0.2.123", 53)

DNS (UDP, using XDP) net.listen('192.0.2.123"', 53, { kind = 'xdp' })

DNS-over-TLS (DoT) net.listen('192.0.2.123"', 853, { kind = '"tls' })

DNS-over-HTTPS (DoH) net.listen('192.0.2.123"', 443, { kind = 'doh2' })

Web management net.listen('192.0.2.123"', 8453, { kind = 'webmgmt' })

Control socket net.listen('/tmp/kres.control', nil, { kind = 'control' })
Examples:

20 Chapter 7. Advanced configuration (Lua)

https://datatracker.ietf.org/doc/html/rfc1034.html
https://datatracker.ietf.org/doc/html/rfc1034.html

Knot Resolver, Release 6.0.0a1

net.listen('::1")

net.listen(net.lo, 53)

net.listen(net.eth®, 853, { kind = "tls' })
net.listen('192.0.2.1', 53, { freebind = true })

net.listen({'127.0.0.1", "::1'}, 53, { kind = 'dns' })

net.listen('::"', 443, { kind = 'doh2' })

net.listen('::", 8453, { kind = 'webmgmt' }) -- see http module
net.listen('/tmp/kresd-socket', nil, { kind = 'webmgmt' }) -- http module.

—supports AF_UNIX
net.listen('eth®', 53, { kind = 'xdp' })
net.listen('192.0.2.123', 53, { kind = 'xdp', nic_queue = 0 })

Warning: On machines with multiple IP addresses avoid listening on wildcards 0.0.0.0 or : :. Knot Resolver
could answer from different IP addresses if the network address ranges overlap, and clients would probably refuse
such a response.

PROXYv2 protocol

Knot Resolver supports proxies that utilize the PROXYv2 protocol to identify clients.

A PROXY header contains the IP address of the original client who sent a query. This allows the resolver to treat
queries as if they actually came from the client’s IP address rather than the address of the proxy they came through.
For example, Views and ACLs are able to work properly when PROXYV2 is in use.

Since allowing usage of the PROXYV2 protocol for all clients would be a security vulnerability, because clients would
then be able to spoof their IP addresses via the PROXYVv2 header, the resolver requires you to specify explicitly which
clients are allowed to send PROXYV2 headers via the net. proxy_allowed() function.

PROXYV2 queries from clients who are not explicitly allowed to use this protocol will be discarded.

net.proxy_allowed([addresses])
Allow usage of the PROXYV2 protocol headers by clients on the specified addresses. It is possible to permit
whole networks to send PROXYv2 headers by specifying the network mask using the CIDR notation (e.g. 172.
22.0.0/16). IPv4 as well as [Pv6 addresses are supported.

If you wish to allow all clients to use PROXYV2 (e.g. because you have this kind of security handled on another
layer of your network infrastructure), you can specify a netmask of /0. Please note that this setting is address-
family-specific, so this needs to be applied to both IPv4 and IPv6 separately.

Subsequent calls to the function overwrite the effects of all previous calls. Providing a table of strings as the
function parameter allows multiple distinct addresses to use the PROXYv2 protocol.

When called without arguments, net.proxy_allowed returns a table of all addresses currently allowed to use
the PROXYV2 protocol and does not change the configuration.

Examples:

net.proxy_allowed('172.22.0.1") -- allows '172.22.0.1' specifically
net.proxy_allowed('172.18.1.0/24"') -- allows everyone at '172.18.1.%
net.proxy_allowed({

'172.22.0.1', '172.18.1.0/24"
ID) -- allows both of the above at once
net.proxy_allowed({ 'fe80::/10' } -- allows everyone at IPv6 link-local
net.proxy_allowed({

(continues on next page)

7.4. Networking and protocols 21

https://www.haproxy.org/download/2.5/doc/proxy-protocol.txt

Knot Resolver, Release 6.0.0a1

(continued from previous page)

'::/0"', '0.0.0.0/0'
b -- allows everyone
net.proxy_allowed('::/0") -- allows all IPv6 (but no IPv4)
net.proxy_allowed({}) -- prevents everyone from using PROXYv2
net.proxy_allowed() -- returns a list of all currently allowed.
—addresses

Features for scripting

Following configuration functions are useful mainly for scripting or Run-time reconfiguration.

net.close (address[, port])

Returns
boolean (at least one endpoint closed)

Close all endpoints listening on the specified address, optionally restricted by port as well.

net.list()

Returns
Table of bound interfaces.

Example output:

[1] => {

[kind] => tls

[transport] => {
[family] => inet4
[ip] => 127.0.0.1
[port] => 853
[protocol] => tcp

}

[2] => {

[kind] => dns

[transport] => {
[family] => inet6
[ip] = ::1
[port] => 53
[protocol] => udp

}

[31 => {
[kind] => dns
[transport] => {
[family] => inet6
[ip] => ::1
[port] => 53
[protocol] => tcp

(4] => {

(continues on next page)

22 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

(continued from previous page)

[kind] => xdp

[transport] => {
[family] => inet4+inet6
[interface] => eth2
[nic_queue] => 0
[port] => 53
[protocol] => udp

3

net.interfaces()

Returns

Table of available interfaces and their addresses.

Example output:

[1o0] => {
[addr] => {
[1] = ::1
[2] => 127.0.0.1
}
[mac] => 00:00:00:00:00:00
}
[eth®] => {
[addr] => {
[1] => 192.168.0.1
}
[mac] => de:ad:be:ef:aa:bb
}

Tip: You can use net.<iface> as a shortcut for specific interface, e.g. net.eth®

net.tcp_pipeline([len])

Get/set per-client TCP pipeline limit, i.e. the number of outstanding queries that a single client connection can

make in parallel. Default is 100.

> net.tcp_pipeline()
100

> net.tcp_pipeline(50)
50

number of SERVFAIL answers.

Warning: Please note that too large limit may have negative impact on performance and can lead to increased

7.4. Networking and protocols

23

Knot Resolver, Release 6.0.0a1

DoT and DoH (encrypted DNS)

Warning: It is important to understand limits of encrypting only DNS traffic. Relevant security analysis can be
found in article Simran Patil and Nikita Borisov. 2019. What can you learn from an IP? See slides or the article
itself.

DoT and DoH encrypt DNS traffic with Transport Layer Security (TLS) protocol and thus protects DNS traffic from
certain types of attacks.

You can learn more about DoT and DoH and their implementation in Knot Resolver in this article.

DNS-over-TLS (DoT)

DNS-over-TLS server (RFC 7858) can be configured using t1s kind in net.listen(). It is enabled on localhost by
default.

For certificate configuration, refer to HTTP status codes.

DNS-over-HTTPS (DoH)

Note: Knot Resolver currently offers two DoH implementations. It is recommended to use this new implementation,
which is more reliable, scalable and has fewer dependencies. Make sure to use doh2 kind in net.Iisten() to select
this implementation.

Tip: Independent information about political controversies around the DoH deployment by default can be found in
blog posts DNS Privacy at IETF 104 and More DOH by Geoff Huston and Centralised DoH is bad for Privacy, in 2019
and beyond by Bert Hubert.

DNS-over-HTTPS server (RFC 8484) can be configured using doh2 kind in net. listen().
This implementation supports HTTP/2 (RFC 7540). Queries can be sent to the /dns-query endpoint, e.g.:

$ kdig @127.0.0.1 +https www.knot-resolver.cz AAAA

Only TLS version 1.3 (or higher) is supported with DNS-over-HTTPS. The additional considerations for TLS 1.2
required by HTTP/2 are not implemented (RFC 7540#section-9.2).

Warning: Take care when configuring your server to listen on well known HTTPS port. If an unrelated HTTPS
service is running on the same port with REUSEPORT enabled, you will end up with both services malfunctioning.

24 Chapter 7. Advanced configuration (Lua)

https://irtf.org/anrw/2019/slides-anrw19-final44.pdf
https://dl.acm.org/authorize?N687437
https://dl.acm.org/authorize?N687437
https://en.blog.nic.cz/2020/11/25/encrypted-dns-in-knot-resolver-dot-and-doh/
https://datatracker.ietf.org/doc/html/rfc7858.html
http://www.potaroo.net/ispcol/2019-04/angst.html
http://www.potaroo.net/ispcol/2019-04/moredoh.html
https://labs.ripe.net/Members/bert_hubert/centralised-doh-is-bad-for-privacy-in-2019-and-beyond
https://labs.ripe.net/Members/bert_hubert/centralised-doh-is-bad-for-privacy-in-2019-and-beyond
https://datatracker.ietf.org/doc/html/rfc8484.html
https://datatracker.ietf.org/doc/html/rfc7540.html
https://datatracker.ietf.org/doc/html/rfc7540.html#section-9.2

Knot Resolver, Release 6.0.0a1

HTTP status codes

As specified by RFC 8484, the resolver responds with status 200 OK whenever it can produce a valid DNS reply for a
given query, even in cases where the DNS rcode indicates an error (like NXDOMAIN, SERVFAIL, etc.).

For DoH queries malformed at the HTTP level, the resolver may respond with the following status codes:
* 400 Bad Request for a generally malformed query, like one not containing a valid DNS packet

* 404 Not Found when an incorrect HTTP endpoint is queried - the only supported ones are /dns-query and
/doh

413 Payload Too Large when the DNS query exceeds its maximum size

415 Unsupported Media Type when the query’s Content-Type header is not application/dns-message

* 431 Request Header Fields Too Large when a header in the query is too large to process

501 Not Implemented when the query uses a method other than GET, POST, or HEAD

Configuration options for DoT and DoH

Note: These settings affect both DNS-over-TLS and DNS-over-HTTPS (except the legacy implementation).

A self-signed certificate is generated by default. For serious deployments it is strongly recommended to configure your
own TLS certificates signed by a trusted CA. This is done using function net.t1s().

net.tls([cert_path] [, key_path])
When called with path arguments, the function loads the server TLS certificate and private key for DoT and DoH.

When called without arguments, the command returns the currently configured paths.

Example output:

> net.tls("/etc/knot-resolver/server-cert.pem", "/etc/knot-resolver/server-key.pem")
> net.tls() -- print configured paths

[cert_file] => '/etc/knot-resolver/server-cert.pem'

[key_file] => '/etc/knot-resolver/server-key.pem'

Tip: The certificate files aren’t automatically reloaded on change. If you update the certificate files, e.g. using
ACME, you have to either restart the service(s) or call this function again using Control sockets.

net.tls_sticket_secret([sm'ng with pre-shared secret])
Set secret for TLS session resumption via tickets, by RFC 5077.

The server-side key is rotated roughly once per hour. By default or if called without secret, the key is random.
That is good for long-term forward secrecy, but multiple kresd instances won’t be able to resume each other’s
sessions.

If you provide the same secret to multiple instances, they will be able to resume each other’s sessions without
any further communication between them. This synchronization works only among instances having the same
endianness and time_t structure and size (sizeof{time_t)).

For good security the secret must have enough entropy to be hard to guess, and it should still be occasion-
ally rotated manually and securely forgotten, to reduce the scope of privacy leak in case the secret leaks
eventually.

7.4. Networking and protocols 25

https://datatracker.ietf.org/doc/html/rfc8484.html
https://datatracker.ietf.org/doc/html/rfc5077.html
https://en.wikipedia.org/wiki/Forward_secrecy
https://en.wikipedia.org/wiki/Forward_secrecy

Knot Resolver, Release 6.0.0a1

Warning: Setting the secret is probably too risky with TLS <= 1.2 and GnuTLS < 3.7.5. GnuTLS
3.7.5 adds an option to disable resumption via tickets for TLS <= 1.2, enabling them only for protocols
that do guarantee PFS. Knot Resolver makes use of this new option when linked against GnuTLS >=
3.75.

net. tls_sticket_secret_file([string with path to a file containing pre-shared secret])
The same as net. t1s_sticket_secret (), except the secret is read from a (binary) file.

net.tls_padding([true | false])

Get/set EDNS(0) padding of answers to queries that arrive over TLS transport. If set to true (the default), it will
use a sensible default padding scheme, as implemented by libknot if available at compile time. If set to a numeric
value >= 2 it will pad the answers to nearest padding boundary, e.g. if set to 64, the answer will have size of a
multiple of 64 (64, 128, 192, ...). If set to false (or a number < 2), it will disable padding entirely.

Configuration options for DoH

net.doh_headers([string or table of strings])

Selects the headers to be exposed. These headers and their values are available in request.qsource.headers.
Comparison is case-insensitive and pseudo-headers are supported as well.

The following snippet can be used in the lua module to access headers :method and user-agent:

net.doh_headers({':method', 'user-agent'})

for i = 1, tonumber(req.qsource.headers.len) do
local name = ffi.string(req.qsource.headers.at[i - 1].name)
local value = ffi.string(req.qsource.headers.at[i - 1].value)
print(name, value)

end

Other HTTP services

Tip: In most distributions, the http module is available from a separate package knot-resolver-module-http.
The module isn’t packaged for openSUSE.

This module does the heavy lifting to provide an HTTP and HTTP/2 enabled server which provides few built-in services
and also allows other modules to export restful APIs and websocket streams.

One example is statistics module that can stream live metrics on the website, or publish metrics on request for
Prometheus scraper.

By default this module provides two kinds of endpoints, and unlimited number of “used-defined kinds” can be added
in configuration.

Kind Explanation
webmgmt built-in web management APIs (includes DoH)
doh_legacy | Legacy DNS-over-HTTPS (DoH)

26 Chapter 7. Advanced configuration (Lua)

https://en.wikipedia.org/wiki/Forward_secrecy

Knot Resolver, Release 6.0.0a1

Each network address and port combination can be configured to expose one kind of endpoint. This is done using the
same mechanisms as network configuration for plain DNS and DNS-over-TLS, see chapter Networking and protocols
for more details.

Warning: Management endpoint (webmgmt) must not be directly exposed to untrusted parties. Use reverse-proxy
like Apache or Nginx if you need to authenticate API clients for the management API.

By default all endpoints share the same configuration for TLS certificates etc. This can be changed using http.
config() configuration call explained below.

Example configuration

This section shows how to configure HTTP module itself. For information how to configure HTTP server’s IP addresses
and ports please see chapter Networking and protocols.

-- load HTTP module with defaults (self-signed TLS cert)
modules.load('http')
-- optionally load geoIP database for server map
http.config({
geoip = 'GeoLite2-City.mmdb"',
-- e.g. https://dev.maxmind.com/geoip/geoip2/geolite2/
-- and install mmdblua library

i)

Now you can reach the web services and APIs, done!

$ curl -k https://localhost:8453
$ curl -k https://localhost:8453/stats

HTTPS (TLS for HTTP)

By default, the web interface starts HTTPS/2 on specified port using an ephemeral TLS certificate that is valid for 90
days and is automatically renewed. It is of course self-signed. Why not use something like Let’s Encrypt?

Warning: If you use package luaossl < 20181207, intermediate certificate is not sent to clients, which may
cause problems with validating the connection in some cases.

You can disable unencrypted HTTP and enforce HTTPS by passing t1s = true option for all HTTP endpoints:

http.config({
tls = true,

)

It is also possible to provide different configuration for each kind of endpoint, e.g. to enforce TLS and use custom
certificate only for DoH:

http.config({
tls = true,
cert = '/etc/knot-resolver/mycert.crt',

(continues on next page)

7.4. Networking and protocols 27

https://en.wikipedia.org/wiki/Reverse_proxy
https://httpd.apache.org/docs/2.4/howto/reverse_proxy.html
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://letsencrypt.org

Knot Resolver, Release 6.0.0a1

(continued from previous page)

key = '/etc/knot-resolver/mykey.key',
}, 'doh_legacy')

The format of both certificate and key is expected to be PEM, e.g. equivalent to the outputs of following:

openssl ecparam -genkey -name prime256v1 -out mykey.key
openssl req -new -key mykey.key -out csr.pem
openssl req -x509 -days 90 -key mykey.key -in csr.pem -out mycert.crt

It is also possible to disable HTTPS altogether by passing t1s = false option. Plain HTTP gets handy if you want to
use reverse-proxy like Apache or Nginx for authentication to API etc. (Unencrypted HTTP could be fine for localhost
tests as, for example, Safari doesn’t allow WebSockets over HTTPS with a self-signed certificate. Major drawback is
that current browsers won’t do HTTP/2 over insecure connection.)

Warning: If you use multiple Knot Resolver instances with these automatically maintained ephemeral certificates,
they currently won’t be shared. It’s assumed that you don’t want a self-signed certificate for serious deployments
anyway.

Legacy DNS-over-HTTPS (DoH)

Warning: The legacy DoH implementation using http module (kind="doh_legacy') is deprecated. It has
known performance and stability issues that won’t be fixed. Use new DNS-over-HTTPS (DoH) implementation
instead.

This was an experimental implementation of RFC 8484. It can be configured using doh_legacy kind in net.
listen(). Its configuration (such as certificates) takes place in http.config(Q).

Queries were served on /doh and /dns-query endpoints.

Built-in services

The HTTP module has several built-in services to use.

Endpoint Service Description

/stats Statistics/metrics Exported metrics from Statistics collector in JSON format.

/metrics Prometheus metrics Exported metrics for Prometheus.

/trace/:name/ Tracking Trace resolution of a DNS query and return its debug-level

Itype logs.

/doh Legacy DNS-over- | RFC 8484 endpoint, see Legacy DNS-over-HTTPS (DoH).
HTTPS

/dns-query Legacy DNS-over- | RFC 8484 endpoint, see Legacy DNS-over-HTTPS (DoH).
HTTPS

28 Chapter 7. Advanced configuration (Lua)

https://en.wikipedia.org/wiki/Reverse_proxy
https://httpd.apache.org/docs/2.4/howto/reverse_proxy.html
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://datatracker.ietf.org/doc/html/rfc8484.html
https://prometheus.io
https://datatracker.ietf.org/doc/html/rfc8484.html
https://datatracker.ietf.org/doc/html/rfc8484.html

Knot Resolver, Release 6.0.0a1

Dependencies

¢ lua-http (>= 0.3) available in LuaRocks

If you’re installing via Homebrew on OS X, you need OpenSSL too.

$ brew update
$ brew install openssl
$ brew link openssl --force # Override system OpenSSL

Some other systems can install from LuaRocks directly:

$ luarocks --lua-version 5.1 install http

* (optional) mmdblua available in LuaRocks

$ luarocks --lua-version 5.1 install --server=https://luarocks.org/dev.
—mmdblua

$ curl -0 https://geolite.maxmind.com/download/geoip/database/GeoLite2-City.
—mmdb.gz

$ gzip -d GeoLite2-City.mmdb.gz

7.4.2 Client (retrieving answers from servers)

Following chapters describe basic configuration of how resolver retrieves data from other (upstream) servers. Data pro-
cessing is also affected by configured policies, see chapter Policy, access control, data manipulation for more advanced
usage.

IPv4 and IPv6 usage
Following settings affect client part of the resolver, i.e. communication between the resolver itself and other DNS
servers.

IPv4 and IPv6 protocols are used by default. For performance reasons it is recommended to explicitly disable protocols
which are not available on your system, though the impact of IPv6 outage is lowered since release 5.3.0.

net.ipv4 = true|false

Return
boolean (default: true)

Enable/disable using IPv4 for contacting upstream nameservers.

net.ipv6 = true|false

Return
boolean (default: true)

Enable/disable using IPv6 for contacting upstream nameservers.

net.outgoing_v4([string address])
Get/set the IPv4 address used to perform queries. The default is nil, which lets the OS choose any address.

net.outgoing_v6([string address])
Get/set the IPv6 address used to perform queries. The default is nil, which lets the OS choose any address.

7.4. Networking and protocols 29

https://github.com/daurnimator/lua-http
https://github.com/daurnimator/mmdblua

Knot Resolver, Release 6.0.0a1

Forwarding

Forwarding configuration instructs resolver to forward cache-miss queries from clients to manually specified DNS
resolvers (upstream servers). In other words the forwarding mode does exact opposite of the default recursive mode
because resolver in recursive mode automatically selects which servers to ask.

Main use-cases are:
* Building a tree structure of DNS resolvers to improve performance (by improving cache hit rate).

¢ Accessing domains which are not available using recursion (e.g. if internal company servers return different
answers than public ones).

» Forwarding through a central DNS traffic filter.
Forwarding implementation in Knot Resolver has following properties:
¢ Answers from upstream servers are cached.
* Answers from upstream servers are locally DNSSEC-validated, unless policy.STUB() is used.

* Resolver automatically selects which IP address from given set of IP addresses will be used (based on perfor-
mance characteristics).

* Forwarding can use either unencrypted DNS protocol, or Forwarding over TLS protocol (DNS-over-TLS).

Warning: We strongly discourage use of “fake top-level domains” like corp. because these made-up domains
are indistinguishable from an attack, so DNSSEC validation will prevent such domains from working. If you really
need a variant of forwarding which does not DNSSEC-validate received data please see chapter Replacing part of
the DNS tree. In long-term it is better to migrate data into a legitimate, properly delegated domains which do not
suffer from these security problems.

Simple examples for unencrypted forwarding:

-- forward all traffic to specified IP addresses (selected automatically)
policy.add(policy.all(policy.FORWARD({'2001:db8::1", '192.0.2.1"'})))

-- forward only queries for names under domain example.com to a single IP address
policy.add(policy.suffix(policy.FORWARD('192.0.2.1"'), {todname('example.com."')}))

To configure encrypted version please see chapter Forwarding over TLS protocol (DNS-over-TLS).

Forwarding is documented in depth together with rest of Query policies.

7.4.3 DNS protocol tweaks

DNS protocol tweaks

Following settings change low-level details of DNS protocol implementation. Default values should not be changed
except for very special cases.

net.bufsize (Judp_downstream_bufsize][, udp_upstream_bufsize])

Get/set maximum EDNS payload size advertised in DNS packets. Different values can be configured for com-
munication downstream (towards clients) and upstream (towards other DNS servers). Set and also get operations
use values in this order.

Default is 1232 bytes which was chosen to minimize risk of issues caused by IP fragmentation. Further details
can be found at DNS Flag Day 2020 web site.

30 Chapter 7. Advanced configuration (Lua)

https://blog.apnic.net/2019/07/12/its-time-to-consider-avoiding-ip-fragmentation-in-the-dns/
https://www.dnsflagday.net/2020/

Knot Resolver, Release 6.0.0a1

Minimal value allowed by standard RFC 6891 is 512 bytes, which is equal to DNS packet size without Extension
Mechanisms for DNS. Value 1220 bytes is minimum size required by DNSSEC standard RFC 4035.

Example output:

-- set downstream and upstream bufsize to value 4096

> net.bufsize(4096)

-- get configured downstream and upstream bufsizes, respectively
> net.bufsize()

4096 -- result # 1

4096 -- result # 2

-- set downstream bufsize to 4096 and upstream bufsize to 1232

> net.bufsize (4096, 1232)

-- get configured downstream and upstream bufsizes, respectively
> net.bufsize()

4096 -- result # 1

1232 -- result # 2

Module workarounds resolver behavior on specific broken sub-domains. Currently it mainly disables case randomiza-
tion.

modules.load('workarounds < iterate')

7.5 Performance and resiliency

For DNS resolvers, the most important parameter from performance perspective is cache hit rate, i.e. percentage of
queries answered from resolver’s cache. Generally the higher cache hit rate the better.

Performance tunning should start with cache Sizing and Persistence.

It is also recommended to run Multiple instances (even on a single machine!) because it allows to utilize multiple CPU
threads and increases overall resiliency.

Other features described in this section can be used for fine-tunning performance and resiliency of the resolver but
generally have much smaller impact than cache settings and number of instances.

7.5.1 Cache
Cache in Knot Resolver is stored on disk and also shared between Multiple instances so resolver doesn’t lose the cached
data on restart or crash.

To improve performance even further the resolver implements so-called aggressive caching for DNSSEC-validated data
(RFC 8198), which improves performance and also protects against some types of Random Subdomain Attacks.

7.5. Performance and resiliency 31

https://datatracker.ietf.org/doc/html/rfc6891.html
https://datatracker.ietf.org/doc/html/rfc4035.html
https://datatracker.ietf.org/doc/html/rfc8198.html

Knot Resolver, Release 6.0.0a1

Sizing
For personal and small office use-cases cache size around 100 MB is more than enough.

For large deployments we recommend to run Knot Resolver on a dedicated machine, and to allocate 90% of machine’s
free memory for resolver’s cache.

Note: Choosing a cache size that can fit into RAM is important even if the cache is stored on disk (default). Otherwise,
the extra I/O caused by disk access for missing pages can cause performance issues.

For example, imagine you have a machine with 16 GB of memory. After machine restart you use command free -m
to determine amount of free memory (without swap):

§ free -m
total used free
Mem: 15907 979 14928

Now you can configure cache size to be 90% of the free memory 14 928 MB, i.e. 13 453 MB:

-- 90 % of free memory after machine restart
cache.size = 13453 * MB

It is also possible to set the cache size based on the file system size. This is useful if you use a dedicated partition for
cache (e.g. non-persistent tmpfs). It is recommended to leave some free space for special files, such as locks.:

cache.size = cache.fssize() - 10*MB

Note: The Garbage Collector can be used to periodically trim the cache. It is enabled and configured by default when
running kresd with systemd integration.

Persistence

Tip: Using tmpfs for cache improves performance and reduces disk 1/O.

By default the cache is saved on a persistent storage device so the content of the cache is persisted during system reboot.
This usually leads to smaller latency after restart etc., however in certain situations a non-persistent cache storage might
be preferred, e.g.:

* Resolver handles high volume of queries and I/O performance to disk is too low.
» Threat model includes attacker getting access to disk content in power-off state.
¢ Disk has limited number of writes (e.g. flash memory in routers).

If non-persistent cache is desired configure cache directory to be on tmpfs filesystem, a temporary in-memory file
storage. The cache content will be saved in memory, and thus have faster access and will be lost on power-off or reboot.

Note: In most of the Unix-like systems /tmp and /var/run are commonly mounted as tmpfs. While it is technically
possible to move the cache to an existing tmpfs filesystem, it is not recommended, since the path to cache is configured
in multiple places.

32 Chapter 7. Advanced configuration (Lua)

https://en.wikipedia.org/wiki/Tmpfs

Knot Resolver, Release 6.0.0a1

Mounting the cache directory as tmpfs is the recommended approach. Make sure to use appropriate size= option and
don’t forget to adjust the size in the config file as well.

/etc/fstab
tmpfs /var/cache/knot-resolver tmpfs rw,size=2G,uid=knot-resolver,
—.gid=knot-resolver,nosuid,nodev,noexec,mode=0700 0 0

-- /etc/knot-resolver/kresd.conf
cache.size = cache.fssize() - 10*MB

Configuration reference

cache.open(max_size [, config_uri])

Parameters
max_size (number) — Maximum cache size in bytes.

Returns
true if cache was opened

Open cache with a size limit. The cache will be reopened if already open. Note that the max_size cannot be
lowered, only increased due to how cache is implemented.

Tip: Use kB, MB, GB constants as a multiplier, e.g. 100*MB.

The URI 1mdb: //path allows you to change the cache directory.

Example:

cache.open(100 * MB, 'lmdb:///var/cache/knot-resolver')

cache.size

Set the cache maximum size in bytes. Note that this is only a hint to the backend, which may or may not respect
it. See cache.open().

cache.size = 100 * MB -- equivalent to ‘cache.open(100 * MB)"

cache.current_size

Get the maximum size in bytes.

print(cache.current_size)

cache.storage

Set the cache storage backend configuration, see cache.backends () for more information. If the new storage
configuration is invalid, it is not set.

cache.storage = 'lmdb://."'

cache.current_storage

Get the storage backend configuration.

print(cache.current_storage)

7.5. Performance and resiliency 33

https://en.wikipedia.org/wiki/Tmpfs

Knot Resolver, Release 6.0.0a1

cache.backends ()

Returns
map of backends

Note: For now there is only one backend implementation, even though the APIs are ready for different (syn-
chronous) backends.

The cache supports runtime-changeable backends, using the optional RFC 3986 URI, where the scheme repre-
sents backend protocol and the rest of the URI backend-specific configuration. By default, it is a 1mdb backend
in working directory, i.e. Ilmdb://.

Example output:

[Imdb://] => true

cache.count ()

Returns

Number of entries in the cache. Meaning of the number is an implementation detail and is subject
of change.

cache.close()

Returns
true if cache was closed

Close the cache.

Note: This may or may not clear the cache, depending on the cache backend.

cache.fssize()
Returns
Partition size of cache storage.
cache.stats()

Return table with low-level statistics for internal cache operation and storage. This counts each access to cache

and does not directly map to individual DNS queries or resource records. For query-level statistics see stats
module.

Example:

> cache.stats()
[clear] => 0

[close] => 0
[commit] => 117
[count] => 2
[count_entries] => 6187
[match] => 21
[match_miss] => 2
[open] => O

[read] => 4313
[read_leq] => 9
[read_leq_miss] => 4

(continues on next page)

34 Chapter 7. Advanced configuration (Lua)

https://datatracker.ietf.org/doc/html/rfc3986.html

Knot Resolver, Release 6.0.0a1

(continued from previous page)

[read_miss] => 1143
[remove] => 17
[remove_miss] => 0
[usage_percent] => 15.625
[write] => 189

Cache operation read_leq (read less or equal, i.e. range search) was requested 9 times, and 4 out of 9 operations
were finished with cache miss. Cache contains 6187 internal entries which occupy 15.625 % cache size.

cache.max_ttl([ttl])

Parameters
ttl (number) — maximum TTL in seconds (default: 1 day)

Returns
current maximum TTL

Get or set upper TTL bound applied to all received records.

Note: The 7/ value must be in range (min_ttl, 2147483647).

-- Get maximum TTL
cache.max_ttl ()
518400

-- Set maximum TTL
cache.max_tt1(172800)
172800

cache.min_ttl([ttl])

Parameters
ttl (number) — minimum TTL in seconds (default: 5 seconds)

Returns
current minimum TTL

Get or set lower TTL bound applied to all received records. Forcing TTL higher than specified violates DNS
standards, so use higher values with care. TTL still won’t be extended beyond expiration of the corresponding
DNSSEC signature.

Note: The 7/ value must be in range <0, max_ttl).

-- Get minimum TTL
cache.min_ttl ()

0

-- Set minimum TTL
cache.min_ttl(5)

5

cache.ns_tout([timeout])

7.5. Performance and resiliency 35

Knot Resolver, Release 6.0.0a1

Parameters
timeout (number) - NS retry interval in milliseconds (default:
KR_NS_TIMEOUT_RETRY_INTERVAL)

Returns
current timeout

Get or set time interval for which a nameserver address will be ignored after determining that it doesn’t return
(useful) answers. The intention is to avoid waiting if there’s little hope; instead, kresd can immediately SERV-
FAIL or immediately use stale records (with serve_stale module).

Warning: This settings applies only to the current kresd process.

cache.get([domain])
This function is not implemented at this moment. We plan to re-introduce it soon, probably with a slightly
different API.

cache.clear([name] [, exact_name] [, rr_type] [, chunk_size] [, callback] [, prev_state])

Purge cache records matching specified criteria. There are two specifics:

* To reliably remove negative cache entries you need to clear subtree with the whole zone. E.g. to
clear negative cache entries for (formerly non-existing) record www.example.com. A you need to

flush whole subtree starting at zone apex, e.g. example.com.".

* This operation is asynchronous and might not be yet finished when call to cache.clear () func-
tion returns. Return value indicates if clearing continues asynchronously or not.
Parameters

* name (string) — subtree to purge; if the name isn’t provided, whole cache is purged (and
any other parameters are disregarded).

* exact_name (bool) —if set to true, only records with the same name are removed; default:
false.

» rr_type (kres. type) — you may additionally specify the type to remove, but that is only
supported with exact_name == true; default: nil.

e chunk_size (integer) — the number of records to remove in one round; default: 100. The
purpose is not to block the resolver for long. The default callback repeats the command
after one millisecond until all matching data are cleared.

callback (function) — a custom code to handle result of the underlying C call. Its param-
eters are copies of those passed to cache.clear() with one additional parameter rettable
containing table with return value from current call. count field contains a return code from
kr_cache_remove_subtree().

» prev_state (table) — return value from previous run (can be used by callback)

Return type
table

Returns

count key is always present. Other keys are optional and their presence indicate special condi-
tions.

! This is a consequence of DNSSEC negative cache which relies on proofs of non-existence on various owner nodes. It is impossible to efficiently
flush part of DNS zones signed with NSEC3.

36 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

* count (integer) - number of items removed from cache by this call (can be O if no entry
matched criteria)

* not_apex - cleared subtree is not cached as zone apex; proofs of non-existence were probably
not removed

* subtree (string) - hint where zone apex lies (this is estimation from cache content and might
not be accurate)

* chunk_limit - more than chunk_size items needs to be cleared, clearing will continue
asynchronously

Examples:

-- Clear whole cache
> cache.clear()
[count] => 76

-- Clear records at and below 'com.'

> cache.clear('com. ")

[chunk_limit] => chunk size limit reached; the default callback will continue.,
—~asynchronously

[not_apex] => to clear proofs of non-existence call cache.clear('com."')
[count] => 100

[round] => 1

[subtree] => com.

> worker.sleep(0.1)

[cache] asynchronous cache.clear('com', false) finished

-- Clear only 'www.example.com.'

> cache.clear('www.example.com."', true)

[round] => 1

[count] => 1

[not_apex] => to clear proofs of non-existence call cache.clear('example.com.")
[subtree] => example.com.

7.5.2 Multiple instances

Note: This section describes the usage of kresd when running under systemd. For other uses, please refer to usage-
without-systemd.

Knot Resolver can utilize multiple CPUs running in multiple independent instances (processes), where each process
utilizes at most single CPU core on your machine. If your machine handles a lot of DNS traffic run multiple instances.

All instances typically share the same configuration and cache, and incoming queries are automatically distributed by
operating system among all instances.

Advantage of using multiple instances is that a problem in a single instance will not affect others, so a single instance
crash will not bring whole DNS resolver service down.

Tip: For maximum performance, there should be as many kresd processes as there are available CPU threads.

To run multiple instances, use a different identifier after @ sign for each instance, for example:

7.5. Performance and resiliency 37

Knot Resolver, Release 6.0.0a1

systemctl start kresd@l.service
systemctl start kresd@2.service
systemctl start kresd@3.service
systemctl start kresd@4.service

A A o

With the use of brace expansion in BASH the equivalent command looks like this:

$ systemctl start kresd@{l..4}.service

For more details see kresd. systemd (7).

Zero-downtime restarts

Resolver restart normally takes just milliseconds and cache content is persistent to avoid performance drop after restart.
If you want real zero-downtime restarts use multiple instances and do rolling restart, i.e. restart only one resolver process
at a time.

On a system with 4 instances run these commands sequentially:

systemctl restart kresd@l.service
systemctl restart kresd@2.service
systemct]l restart kresd@3.service
systemctl restart kresd@4.service

P A A A

Atany given time only a single instance is stopped and restarted so remaining three instances continue to service clients.

Instance-specific configuration

Instances can use arbitrary identifiers for the instances, for example we can name instances like dns!, tls and so on.

systemctl start kresd@dnsl
systemctl start kresd@dns2
systemct]l start kresd@tls
systemctl start kresd@doh

e A A

The instance name is subsequently exposed to kresd via the environment variable SYSTEMD_INSTANCE. This can be
used to tell the instances apart, e.g. when using the Name Server Identifier (NSID) module with per-instance configu-
ration:

local systemd_instance = os.getenv("SYSTEMD_INSTANCE")

modules.load('nsid")
nsid.name(systemd_instance)

More arcane set-ups are also possible. The following example isolates the individual services for classic DNS, DoT
and DoH from each other.

local systemd_instance = os.getenv("'SYSTEMD_INSTANCE")

if string.match(systemd_instance, 'Adns') then
net.listen('127.0.0.1", 53, { kind = '"dns' })

elseif string.match(systemd_instance, 'Atls') then
net.listen('127.0.0.1"', 853, { kind = "tls' })

(continues on next page)

38 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

(continued from previous page)

elseif string.match(systemd_instance, '#doh') then
net.listen('127.0.0.1', 443, { kind = 'doh2' })
else
panic("Use kresd@dns*, kresd@tls* or kresd@doh* instance names')
end

7.5.3 Prefetching records

The predict module helps to keep the cache hot by prefetching records. It can utilize two independent mechanisms
to select the records which should be refreshed: expiring records and prediction.

Expiring records

This mechanism is always active when the predict module is loaded and it is not configurable.

Any time the resolver answers with records that are about to expire, they get refreshed. (see is_expiring()) That
improves latency for records which get frequently queried, relatively to their TTL.

Prediction
The predict module can also learn usage patterns and repetitive queries, though this mechanism is a prototype and not
recommended for use in production or with high traffic.

For example, if it makes a query every day at 18:00, the resolver expects that it is needed by that time and prefetches it
ahead of time. This is helpful to minimize the perceived latency and keeps the cache hot.

You can disable prediction by configuring period = 0. Otherwise it will load the required stzazs module if not present,
and it will use its stats. frequent () table and clear it periodically.

Tip: The tracking window and period length determine memory requirements. If you have a server with relatively
fast query turnover, keep the period low (hour for start) and shorter tracking window (5 minutes). For personal slower
resolver, keep the tracking window longer (i.e. 30 minutes) and period longer (a day), as the habitual queries occur
daily. Experiment to get the best results.

Example configuration

modules = {
predict = {
-- this mode is NOT RECOMMENDED for use in production
window = 15, -- 15 minutes sampling window
period = 6%(60/15) -- track last 6 hours

7.5. Performance and resiliency 39

Knot Resolver, Release 6.0.0a1

Exported metrics

To visualize the efficiency of the predictions, the module exports following statistics.
» predict.epoch - current prediction epoch (based on time of day and sampling window)
* predict.queue - number of queued queries in current window

e predict.learned - number of learned queries in current window

Properties

predict.config({ window = 15, period = 24})

Reconfigure the predictor to given tracking window and period length. Both parameters are optional. Window
length is in minutes, period is a number of windows that can be kept in memory. e.g. if a window is 15 minutes,
a period of “24” means 6 hours.

7.5.4 Cache prefilling

This module provides ability to periodically prefill the DNS cache by importing root zone data obtained over HTTPS.

Intended users of this module are big resolver operators which will benefit from decreased latencies and smaller amount
of traffic towards DNS root servers.

Example configuration is:

modules.load('prefill')
prefill.config({

[".'] = {
url = 'https://www.internic.net/domain/root.zone',
interval = 86400, -- seconds
ca_file = '/etc/pki/tls/certs/ca-bundle.crt', -- optional
}

D)

This configuration downloads the zone file from URL https://www.internic.net/domain/root.zone and imports it into
the cache every 86400 seconds (1 day). The HTTPS connection is authenticated using a CA certificate from file
letc/pki/tls/certs/ca-bundle.crt and signed zone content is validated using DNSSEC.

The root zone to be imported must be signed using DNSSEC and the resolver must have a valid DNSSEC configuration.

Param- | Description
eter
ca_file path to CA certificate bundle used to authenticate the HTTPS connection (optional, system-wide store
will be used if not specified)

interval number of seconds between zone data refresh attempts

url URL of a file in RFC 1035 zone file format

Only root zone import is supported at the moment.

40 Chapter 7. Advanced configuration (Lua)

https://datatracker.ietf.org/doc/html/rfc1035.html

Knot Resolver, Release 6.0.0a1

Dependencies

Prefilling depends on the lua-http library.

7.5.5 Serve stale

Demo module that allows using timed-out records in case kresd is unable to contact upstream servers.

By default it allows stale-ness by up to one day, after roughly four seconds trying to contact the servers. It’s quite
configurable/flexible; see the beginning of the module source for details. See also the RFC draft (not fully followed)
and cache.ns_tout.

Running

modules = { 'serve_stale < cache' }

7.5.6 Root on loopback (RFC 7706)

Knot Resolver developers think that literal implementation of RFC 7706 (“Decreasing Access Time to Root Servers
by Running One on Loopback™) is a bad idea so it is not implemented in the form envisioned by the RFC.

You can get the very similar effect without its downsides by combining Cache prefilling and Serve stale modules
with Aggressive Use of DNSSEC-Validated Cache (RFC 8198) behavior which is enabled automatically together with
DNSSEC validation.

7.5.7 Priming module
The module for Initializing a DNS Resolver with Priming Queries implemented according to RFC 8109. Purpose of
the module is to keep up-to-date list of root DNS servers and associated IP addresses.

Result of successful priming query replaces root hints distributed with the resolver software. Unlike other DNS re-
solvers, Knot Resolver caches result of priming query on disk and keeps the data between restarts until TTL expires.

This module is enabled by default; you may disable it by adding modules.unload('priming') to your configuration.

7.5.8 EDNS keepalive

The edns_keepalive module implements RFC 7828 for clients connecting to Knot Resolver via TCP and TLS. The
module just allows clients to discover the connection timeout, client connections are always timed-out the same way
regardless of clients sending the EDNS option.

When connecting to servers, Knot Resolver does not send this EDNS option. It still attempts to reuse established
connections intelligently.

This module is loaded by default. For debugging purposes it can be unloaded using standard means:

modules.unload('edns_keepalive')

7.5. Performance and resiliency 41

https://luarocks.org/modules/daurnimator/http
https://tools.ietf.org/html/draft-ietf-dnsop-serve-stale-00
https://datatracker.ietf.org/doc/html/rfc7706.html
https://datatracker.ietf.org/doc/html/rfc8198.html
https://datatracker.ietf.org/doc/html/rfc8109.html
https://datatracker.ietf.org/doc/html/rfc7828.html

Knot Resolver, Release 6.0.0a1

7.5.9 XDP for higher UDP performance

Warning: As of version 5.2.0, XDP support in Knot Resolver is considered experimental. The impact on overall
throughput and performance may not always be beneficial.

Using XDP allows significant speedup of UDP packet processing in recent Linux kernels, especially with some network
drivers that implement good support. The basic idea is that for selected packets the Linux networking stack is bypassed,
and some drivers can even directly use the user-space buffers for reading and writing.

Prerequisites

Warning: Bypassing the network stack has significant implications, such as bypassing the firewall and monitoring
solutions. Make sure you’re familiar with the trade-offs before using this feature. Read more in Limitations.

e Linux kernel 4.18+ (5.x+ is recommended for optimal performance) compiled with the CON-
FIG_XDP_SOCKETS=y option. XDP isn’t supported in other operating systems.

* libknot compiled with XDP support

* A multiqueue network card with native XDP support is highly recommended, otherwise the performance
gain will be much lower and you may encounter issues due to XDP emulation. Successfully tested cards:

— Intel series 700 (driver i40e), maximum number of queues per interface is 64.

— Intel series 500 (driver ixgbe), maximum number of queues per interface is 64. The number of CPUs
available has to be at most 64!

Set up

The server instances need additional Linux capabilities during startup. (Or you could start them as root.) Execute
command

systemctl edit kresd@.service

And insert these lines:

[Service]

CapabilityBoundingSet=CAP_NET_RAW CAP_NET_ADMIN CAP_SYS_ADMIN CAP_IPC_LOCK CAP_SYS_
—RESOURCE

AmbientCapabilities=CAP_NET_RAW CAP_NET_ADMIN CAP_SYS_ADMIN CAP_IPC_LOCK CAP_SYS_RESOURCE

The CAP_SYS_RESOURCE is only needed on Linux < 5.11.

You want the same number of kresd instances and network queues on your card; you can use ethtool -L before the
services start. With XDP this is more important than with vanilla UDP, as we only support one instance per queue and
unclaimed queues will fall back to vanilla UDP. Ideally you can set these numbers as high as the number of CPUs that
you want kresd to use.

Modification of /etc/knot-resolver/kresd.conf may often be quite simple, for example:

net.listen('eth2', 53, { kind = 'xdp' })
net.listen('203.0.113.53", 53, { kind = 'dns' })

42 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

Note that you want to also keep the vanilla DNS line to service TCP and possibly any fallback UDP (e.g. from unclaimed
queues). XDP listening is in principle done on queues of whole network interfaces and the target addresses of incoming
packets aren’t checked in any way, but you are still allowed to specify interface by an address (if it’s unambiguous at
that moment):

net.listen('203.0.113.53", 53, { kind = 'xdp' })
net.listen('203.0.113.53", 53, { kind 'dns' })

The default selection of queues is tailored for the usual naming convention: kresd@1.service, kresd@2. service,
... but you can still specify them explicitly, e.g. the default is effectively the same as:

net.listen('eth2', 53, { kind = 'xdp', nic_queue = env.SYSTEMD_INSTANCE - 1 })

Optimizations

Some helpful commands:

ethtool -N <interface> rx-flow-hash udp4 sdfn
ethtool -N <interface> rx-flow-hash udp6 sdfn
ethtool -L <interface> combined <queue-number>
ethtool -G <interface> rx <ring-size> tx <ring-size>
renice -n 19 -p $(pgrep '“*ksoftirqd/[0-9]1*$')

Limitations

* VLAN segmentation is not supported.
* MTU higher than 1792 bytes is not supported.
» Multiple BPF filters per one network device are not supported.

* Symmetrical routing is required (query source MAC/IP addresses and reply destination MAC/IP addresses are
the same).

» Systems with big-endian byte ordering require special recompilation of libknot.
 IPv4 header and UDP checksums are not verified on received DNS messages.
* DNS over XDP traffic is not visible to common system tools (e.g. firewall, tcpdump etc.).

» BPF filter is not automatically unloaded from the network device. Manual filter unload:

ip link set dev <interface> xdp off

* Knot Resolver only supports using XDP towards clients currently (not towards upstreams).

* When starting up an XDP socket you may get a harmless warning:

libbpf: Kernel error message: XDP program already attached

7.5. Performance and resiliency 43

Knot Resolver, Release 6.0.0a1

7.6 Policy, access control, data manipulation

Features in this section allow to configure what clients can get access to what DNS data, i.e. DNS data filtering and
manipulation.

Query policies specify global policies applicable to all requests, e.g. for blocking access to particular domain. Views
and ACLs allow to specify per-client policies, e.g. block or unblock access to a domain only for subset of clients.

It is also possible to modify data returned to clients, either by providing Static hints (answers with statically configured
IP addresses), DNS64 translation, or /P address renumbering.

Additional modules offer protection against various DNS-based attacks, see Rebinding protection and Refuse queries
without RD bit.

At the very end, module DNS Application Firewall provides HTTP API for run-time policy modification, and generally
just offers different interface for previously mentioned features.

7.6.1 Query policies

This module can block, rewrite, or alter inbound queries based on user-defined policies. It does not affect queries
generated by the resolver itself, e.g. when following CNAME chains etc.

Each policy rule has two parts: a filter and an action. A filter selects which queries will be affected by the policy, and
action which modifies queries matching the associated filter.

Typically a rule is defined as follows: filter(action(action parameters), filter parameters). For ex-
ample, a filter can be suffix which matches queries whose suffix part is in specified set, and one of possible ac-
tions is policy.DENY, which denies resolution. These are combined together into policy.suffix(policy.DENY,
{todname ('badguy.example. ')}). The rule is effective when it is added into rule table using policy.add(),
please see examples below.

This module is enabled by default because it implements mandatory RFC 6761 logic. When no rule applies to a query,
built-in rules for special-use and locally-served domain names are applied. These rules can be overridden by action
policy.PASS. For debugging purposes you can also add modules.unload('policy") to your config to unload the
module.

Filters
A filter selects which queries will be affected by specified Actions. There are several policy filters available in the
policy. table:
policy.all(action)
Always applies the action.
policy.pattern(action, pattern)
Applies the action if query name matches a Lua regular expression.
policy.suffix(action, suffix_table)
Applies the action if query name suffix matches one of suffixes in the table (useful for “is domain in zone” rules).

policy.add(policy.suffix(policy.DENY, policy.todnames({'example.com', 'example.net'}
=)))

44 Chapter 7. Advanced configuration (Lua)

https://datatracker.ietf.org/doc/html/rfc6761.html
https://www.iana.org/assignments/special-use-domain-names/special-use-domain-names.xhtml
http://www.iana.org/assignments/locally-served-dns-zones
http://lua-users.org/wiki/PatternsTutorial

Knot Resolver, Release 6.0.0a1

Note: For speed this filter requires domain names in DNS wire format, not textual representation, so each label
in the name must be prefixed with its length. Always use convenience function policy. todnames () for automatic
conversion from strings! For example:

Note: Non-ASCII is not supported.

Knot Resolver does not provide any convenience support for IDN. Therefore everywhere (all configuration, logs, RPZ
files) you need to deal with the xn-- forms of domain name labels, instead of directly using unicode characters.

policy.domains (action, domain_table)

Like policy.suffix() match, but the queried name must match exactly, not just its suffix.

policy.suffix_common (action, suffix_table [, common_suffix])

Parameters
* action — action if the pattern matches query name
» suffix_table — table of valid suffixes
» common_suffix — common suffix of entries in suffix_table

Like policy.suffix() match, but you can also provide a common suffix of all matches for faster processing
(nil otherwise). This function is faster for small suffix tables (in the order of “hundreds”).

It is also possible to define custom filter function with any name.

policy.custom_filter(state, query)

Parameters
* state — Request processing state kr_layer_state, typically not used by filter function.
* query — Incoming DNS query as kr_query structure.

Returns
An action function or nil if filter did not match.

Typically filter function is generated by another function, which allows easy parametrization - this technique is
called closure. An practical example of such filter generator is:

function match_query_type(action, target_gtype)
return function (state, query)
if query.stype == target_qtype then
-- filter matched the query, return action function
return action
else
-- filter did not match, continue with next filter
return nil
end
end
end

This custom filter can be used as any other built-in filter. For example this applies our custom filter and executes action
policy.DENY on all queries of type HINFO:

7.6. Policy, access control, data manipulation 45

https://en.wikipedia.org/wiki/Internationalized_domain_name#Example_of_IDNA_encoding
https://www.lua.org/pil/6.1.html

Knot Resolver, Release 6.0.0a1

-- custom filter which matches HINFO queries, action is policy.DENY
policy.add(match_query_type(policy.DENY, kres.type.HINFO))

Actions

An action is a function which modifies DNS request, and is either of type chain or non-chain:
* Non-chain actions modify state of the request and stop rule processing. An example of such action is Forwarding.

* Chain actions modify state of the request and allow other rules to evaluate and act on the same request. One such
example is policy.MIRROR().

Non-chain actions

Following actions stop the policy matching on the query, i.e. other rules are not evaluated once rule with following
actions matches:

policy.PASS

Let the query pass through; it’s useful to make exceptions before wider rules. For example:

More specific whitelist rule must precede generic blacklist rule:

-- Whitelist 'good.example.com'
policy.add(policy.pattern(policy.PASS, todname('good.example.com."')))
-- Block all names below example.com
policy.add(policy.suffix(policy.DENY, {todname('example.com.')}))

policy.DENY
Deny existence of names matching filter, i.e. reply NXDOMAIN authoritatively.
policy.DENY_MSG(message [, extended_error=kres.extended_error. BLOCKED])

Deny existence of a given domain and add explanatory message. NXDOMAIN reply contains an additional
explanatory message as TXT record in the additional section.

You may override the extended DNS error to provide the user with more information. By default, BLOCKED is
returned to indicate the domain is blocked due to the internal policy of the operator. Other suitable error codes
are CENSORED (for externally imposed policy reasons) or FILTERED (for blocking requested by the client). For
more information, please refer to RFC 8914.

policy.DROP

Terminate query resolution and return SERVFAIL to the requestor.
policy.REFUSE

Terminate query resolution and return REFUSED to the requestor.
policy.NO_ANSWER

Terminate query resolution and do not return any answer to the requestor.

Warning: During normal operation, an answer should always be returned. Deliberate query drops are
indistinguishable from packet loss and may cause problems as described in RFC 8906. Only use NO_ANSWER
on very specific occasions, e.g. as a defense mechanism during an attack, and prefer other actions (e.g. DROP
or REFUSE) for normal operation.

46 Chapter 7. Advanced configuration (Lua)

https://datatracker.ietf.org/doc/html/rfc8914.html
https://datatracker.ietf.org/doc/html/rfc8906.html

Knot Resolver, Release 6.0.0a1

policy.TC

Force requestor to use TCP. It sets truncated bit (7C) in response to true if the request came through UDP, which
will force standard-compliant clients to retry the request over TCP.

policy.REROUTE ({subnet = target, ...})

Reroute IP addresses in response matching given subnet to given target, e.g. {['192.0.2.0/24'] = '127.0.
0.0"'} will rewrite ‘192.0.2.55 to ‘127.0.0.55’, see renumber module for more information. See policy.add()
and do not forget to specify that this is postrule. Quick example:

-- this policy is enforced on answers

-- therefore we have to use 'postrule’

-- (the "true" at the end of policy.add)
policy.add(policy.all(policy.REROUTE({['192.0.2.0/24"'] = "'"127.0.0.0'})), true)

policy.ANSWER({ type = { rdata=data, [ttI=1] } }, [nodata=false])

Overwrite Resource Records in responses with specified values.
¢ type - RR type to be replaced, e.g. [kres.type.A] or numeric value.

¢ rdata - RR data in DNS wire format, i.e. binary form specific for given RR type. Set of multiple RRs
can be specified as table { rdatal, rdata2, ... }. Use helper function kres.str2ip() to generate
wire format for A and AAAA records. Wire format for other record types can be generated with kres.
parse_rdata().

e ttl - TTL in seconds. Default: 1 second.
* nodata - If type requested by client is not configured in this policy:
— true: Return empty answer (NODATA).
— false: Ignore this policy and continue processing other rules.

Default: false.

-- policy to change IPv4 address and TTL for example.com
policy.add(
policy.domains(
policy.ANSWER(
{ [kres.type.A] = { rdata=kres.str2ip('192.0.2.7'), ttl=300 } }
), { todname('example.com') 3}))
-- policy to generate two TXT records (specified in binary format) for example.net
policy.add(
policy.domains(
policy.ANSWER(
{ [kres.type.TXT] = { rdata={'\005first', '\006second'}, ttl=5 } }
), { todname('example.net') 3}))

kres.parse_rdata({str, ...})

Parse string representation of RTYPE and RDATA into RDATA wire format. Expects a table of string(s)
and returns a table of wire data.

-- create wire format RDATA that can be passed to policy.ANSWER
kres.parse_rdata({'SVCB 1 resolver.example. alpn=dot'})
kres.parse_rdata({
'SVCB 1 resolver.example. alpn=dot ipv4hint=192.0.2.1 ipv6hint=2001:db8::1",
'SVCB 2 resolver.example. mandatory=key65380 alpn=h2 key65380=/dns-query{?

(continues on next page)

7.6. Policy, access control, data manipulation 47

https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-4

Knot Resolver, Release 6.0.0a1

(continued from previous page)

—dns}',

D)

More complex non-chain actions are described in their own chapters, namely:
* Forwarding

* Response Policy Zones

Chain actions

Following actions act on request and then processing continue until first non-chain action (specified in the previous
section) is triggered:

policy.MIRROR (ip_address)

Send copy of incoming DNS queries to a given IP address using DNS-over-UDP and continue resolving them as
usual. This is useful for sanity testing new versions of DNS resolvers.

policy.add(policy.all(policy.MIRROR('127.0.0.2")))

policy.FLAGS (set, clear)
Set and/or clear some flags for the query. There can be multiple flags to set/clear. You can just pass a single flag
name (string) or a set of names. Flag names correspond to kr_qgflags structure. Use only if you know what
you are doing.

Actions for extra logging

These are also “chain” actions, i.e. they don’t stop processing the policy rule list. Similarly to other actions, they apply
during whole processing of the client’s request, i.e. including any sub-queries.

The log lines from these policy actions are tagged by extra [reqdbg] prefix, and they are produced regardless of your
log_level() setting. They are marked as debug level, so e.g. with journalctl command you can use -p info to skip
them.

Warning: Beware of producing too much logs.

These actions are not suitable for use on a large fraction of resolver’s requests. The extra logs have significant
performance impact and might also overload your logging system (or get rate-limited by it). You can use Filters to
further limit on which requests this happens.

policy.DEBUG_ALWAYS

Print debug-level logging for this request. That also includes messages from client (REQTRACE), upstream servers
(QTRACE), and stats about interesting records at the end.

-- debug requests that ask for flaky.example.net or below
policy.add(policy.suffix(policy.DEBUG_ALWAYS,
policy.todnames({'flaky.example.net'})))

policy.DEBUG_CACHE_MISS

Same as DEBUG_ALWAYS but only if the request required information which was not available locally, i.e. requests
which forced resolver to ask upstream server(s). Intended usage is for debugging problems with remote servers.

48 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

policy.DEBUG_IF (test_function)

Parameters
test_function — Function with single argument of type kr_request which returns true if
debug logs for that request should be generated and false otherwise.

Same as DEBUG_ALIWAYS but only logs if the test_function says so.

Note: test_function is evaluated only when request is finished. As a result all debug logs this request must
be collected, and at the end they get either printed or thrown away.

Example usage which gathers verbose logs for all requests in subtree dnssec-failed.org. and prints
debug logs for those finishing in a different state than kres.DONE (most importantly kres.FAIL, see
kr_layer_state).

policy.add(policy.suffix(
policy.DEBUG_IF (function(req)
return (req.state ~= kres.DONE)
end),
policy.todnames({'dnssec-failed.org."'})))

policy.QTRACE

Pretty-print DNS responses from upstream servers (or cache) into logs. It’s useful for debugging weird DNS
servers.

If you do not use QTRACE in combination with DEBUG*, you additionally need either log_groups({'iterat'})
(possibly with other groups) or log_level ('debug') to see the output in logs.
policy.REQTRACE

Pretty-print DNS requests from clients into the verbose log. It’s useful for debugging weird DNS clients. It
makes most sense together with Views and ACLs (enabling per-client) and probably with verbose logging those
request (e.g. use DEBUG_ALWAYS instead).

policy.IPTRACE

Log how the request arrived. Most notably, this includes the client’s IP address, so beware of privacy implications.

-- example usage in configuration
policy.add(policy.all(policy.IPTRACE))

-- you might want to combine it with some other logs, e.g.
policy.add(policy.all(policy.DEBUG_ALWAYS))

-- example log lines from IPTRACE:

[reqdbg] [policy][57517.00] request packet arrived from ::1#37931 to ::1#00853 (TCP.
—+ TLS)

[reqdbg] [policy][65538.00] request packet arrived internally

7.6. Policy, access control, data manipulation 49

Knot Resolver, Release 6.0.0a1

Custom actions

policy.custom_action(state, request)

Parameters
» state — Request processing state kr_layer_state.
* request — Current DNS request as kr_request structure.

Returns
Returning anew kr_layer_state prevents evaluating other policy rules. Returning nil creates
a chain action and allows to continue evaluating other rules.

This is real example of an action function:

-- Custom action which generates fake A record
local ffi = require('ffi')
local function fake_A_record(state, req)
local answer = req:ensure_answer()
if answer == nil then return nil end
local qry = req:current()
if qry.stype ~= kres.type.A then
return state
end
ffi.C.kr_pkt_make_auth_header(answer)
answer:rcode(kres.rcode.NOERROR)
answer:begin(kres.section.ANSWER)
answer:put(gry.sname, 900, answer:qclass(), kres.type.A, '\192\168\1\3")
return kres.DONE
end

This custom action can be used as any other built-in action. For example this applies our fake A record action and
executes it on all queries in subtree example.net:

policy.add(policy.suffix(fake_A_record, policy.todnames({'example.net'})))

The action function can implement arbitrary logic so it is possible to implement complex heuristics, e.g. to deflect
Slow drip DNS attacks or gray-list resolution of misbehaving zones.

Warning: The policy module currently only looks at whole DNS requests. The rules won’t be re-applied e.g.
when following CNAME:s.

Forwarding

Forwarding action alters behavior for cache-miss events. If an information is missing in the local cache the resolver will
forward the query to another DNS resolver for resolution (instead of contacting authoritative servers directly). DNS
answers from the remote resolver are then processed locally and sent back to the original client.

Actions policy.FORWARD(), policy.TLS_FORWARD() and policy.STUB() accept up to four IP addresses at once
and the resolver will automatically select IP address which statistically responds the fastest.

policy.FORWARD (ip_address)

50 Chapter 7. Advanced configuration (Lua)

https://secure64.com/water-torture-slow-drip-dns-ddos-attack

Knot Resolver, Release 6.0.0a1

policy.FORWARD ({ ip_address, [ip_address, ...] })

Forward cache-miss queries to specified IP addresses (without encryption), DNSSEC validate received answers
and cache them. Target IP addresses are expected to be DNS resolvers.

-- Forward all queries to public resolvers https://www.nic.cz/odvr
policy.add(policy.all(
policy.FORWARD(
{'2001:148f:fffe::1", '2001:148f:ffff::1',
'185.43.135.1", '193.14.47.1'})))

A variant which uses encrypted DNS-over-TLS transport is called policy.TLS_FORWARD (), please see section
Forwarding over TLS protocol (DNS-over-TLS).

policy.STUB(ip_address)

policy.STUB({ ip_address, [ip_address, ...] })

Similar to policy.FORWARD() but without attempting DNSSEC validation. Each request may be either an-
swered from cache or simply sent to one of the IPs with proxying back the answer.

This mode does not support encryption and should be used only for Replacing part of the DNS tree. Use policy.
FORWARD () mode if possible.

-- Answers for reverse queries about the 192.168.1.0/24 subnet
-- are to be obtained from IP address 192.0.2.1 port 5353
-- This disables DNSSEC validation!
policy.add(policy.suffix(
policy.STUB('192.0.2.1@5353"),
{todname('1.168.192.in-addr.arpa')}))

Note: By default, forwarding targets must support EDNS and 0x20 randomization. See example in Replacing part of
the DNS tree.

Warning: Limiting forwarding actions by filters (e.g. policy.suffix()) may have unexpected consequences.
Notably, forwarders can inject any records into your cache even if you “restrict” them to an insignificant DNS
subtree — except in cases where DNSSEC validation applies, of course.

The behavior is probably best understood through the fact that filters and actions are completely decoupled. The
forwarding actions have no clue about why they were executed, e.g. that the user wanted to restrict the forwarder
only to some subtree. The action just selects some set of forwarders to process this whole request from the client,
and during that processing it might need some other “sub-queries” (e.g. for validation). Some of those might not’ve
passed the intended filter, but policy rule-set only applies once per client’s request.

Forwarding over TLS protocol (DNS-over-TLS)

policy.TLS_FORWARD ({ {ip_address, authentication}, [...] })

Same as policy.FORWARD() but send query over DNS-over-TLS protocol (encrypted). Each target IP ad-
dress needs explicit configuration how to validate TLS certificate so each IP address is configured by pair:
{ip_address, authentication}. See sections below for more details.

Policy policy.TLS_FORWARD () allows you to forward queries using Transport Layer Security protocol, which hides
the content of your queries from an attacker observing the network traffic. Further details about this protocol can be
found in RFC 7858 and IETF draft dprive-dtls-and-tls-profiles.

7.6. Policy, access control, data manipulation 51

https://en.wikipedia.org/wiki/Extension_mechanisms_for_DNS
https://tools.ietf.org/html/draft-vixie-dnsext-dns0x20-00
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://datatracker.ietf.org/doc/html/rfc7858.html
https://tools.ietf.org/html/draft-ietf-dprive-dtls-and-tls-profiles

Knot Resolver, Release 6.0.0a1

Queries affected by policy.TLS_FORWARD () will always be resolved over TLS connection. Knot Resolver does not
implement fallback to non-TLS connection, so if TLS connection cannot be established or authenticated according to
the configuration, the resolution will fail.

To test this feature you need to either configure Knot Resolver as DNS-over-TLS server, or pick some public DNS-over-
TLS server. Please see DNS Privacy Project homepage for list of public servers.

Note: Some public DNS-over-TLS providers may apply rate-limiting which makes their service incompatible with
Knot Resolver’s TLS forwarding. Notably, Google Public DNS doesn’t work as of 2019-07-10.

When multiple servers are specified, the one with the lowest round-trip time is used.

CA-+hostname authentication

Traditional PKI authentication requires server to present certificate with specified hostname, which is issued by one of
trusted CAs. Example policy is:

policy.TLS_FORWARD({
{'2001:DB8::d0c"', hostname='res.example.com'}})

* hostname must be a valid domain name matching server’s certificate. It will also be sent to the server as SNI.

e ca_file optionally contains a path to a CA certificate (or certificate bundle) in PEM format. If you omit that,
the system CA certificate store will be used instead (usually sufficient). A list of paths is also accepted, but all
of them must be valid PEMs.

Key-pinned authentication

Instead of CAs, you can specify hashes of accepted certificates in pin_sha256. They are in the usual format — base64
from sha256. You may still specify hostname if you want SNI to be sent.

TLS Examples

modules = { 'policy' }

-- forward all queries over TLS to the specified server
policy.add(policy.all(policy.TLS_FORWARD({{'192.0.2.1", pin_sha256="YQ=="3}1})))

-- for brevity, other TLS examples omit policy.add(policy.all())

-- single server authenticated using its certificate pin_sha256
policy.TLS_FORWARD({{'192.0.2.1", pin_sha256="'YQ=="'1}}) -- pin_sha256 is base64-encoded
-- single server authenticated using hostname and system-wide CA certificates
policy.TLS_FORWARD({{'192.0.2.1", hostname='res.example.com'}})

-- single server using non-standard port

policy.TLS_FORWARD({{'192.0.2.1@443"', pin_sha256='YQ=="}}) -- use @ or # to specify port
-- single server with multiple valid pins (e.g. anycast)
policy.TLS_FORWARD({{'192.0.2.1", pin_sha256={'YQ==", 'Wg=='3}})

-- multiple servers, each with own authenticator

policy.TLS_FORWARD({ -- please note that { here starts list of servers
{'192.0.2.1", pin_sha256="Wg=="},
-- server must present certificate issued by specified CA and hostname must match
{'2001:DB8::d0c"', hostname='res.example.com', ca_file='/etc/knot-resolver/tlsca.crt'}

i)

52 Chapter 7. Advanced configuration (Lua)

https://dnsprivacy.org/
https://developers.google.com/speed/public-dns/docs/dns-over-tls
https://en.wikipedia.org/wiki/Server_Name_Indication
https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail
https://en.wikipedia.org/wiki/Server_Name_Indication

Knot Resolver, Release 6.0.0a1

Forwarding to multiple targets

With the use of policy.slice() function, it is possible to split the entire DNS namespace into distinct slices. When
used in conjunction with policy.TLS_FORWARD(), it’s possible to forward different queries to different targets.

policy.slice(slice_func, action[, action], ...])

Parameters
» slice_func - slicing function that returns index based on query
* action — action to be performed for the slice

This function splits the entire domain space into multiple slices (determined by the number of provided actions).
A slice_func is called to determine which slice a query belongs to. The corresponding action is then exe-
cuted.

policy.slice_randomize_psl (seed=os.time() /3600 * 24 *7)

Parameters
seed - seed for random assignment

The function initializes and returns a slicing function, which deterministically assigns query to a slice based on
the query name.

It utilizes the Public Suffix List to ensure domains under the same registrable domain end up in a single slice.
(see example below)

seed can be used to re-shuffie the slicing algorithm when the slicing function is initialized. By default, the
assignment is re-shuffled after one week (when resolver restart / reloads config). To force a stable distribution,
pass a fixed value. To re-shuffle on every resolver restart, use os.time().

The following example demonstrates a distribution among 3 slices:

slice 1/3:
example.com
a.example.com
b.example.com
x.b.example.com
example3.com

slice 2/3:
example2.co.uk

slice 3/3:
example.co.uk
a.example.co.uk

These two functions can be used together to forward queries for names in different parts of DNS name space to different
target servers:

policy.add(policy.slice(
policy.slice_randomize_psl(),
policy.TLS_FORWARD({{'192.0.2.1", hostname='res.example.com'}}),
policy.TLS_FORWARD ({
-- multiple servers can be specified for a single slice
-- the one with lowest round-trip time will be used
{'193.17.47.1", hostname='odvr.nic.cz'},

(continues on next page)

7.6. Policy, access control, data manipulation 53

https://publicsuffix.org

Knot Resolver, Release 6.0.0a1

(continued from previous page)

{'185.43.135.1", hostname='odvr.nic.cz'},
b
))

Note: The privacy implications of using this feature aren’t clear. Since websites often make requests to multiple
domains, these might be forwarded to different targets. This could result in decreased privacy (e.g. when the remote
targets are both logging or otherwise processing your DNS traffic). The intended use-case is to use this feature with
semi-trusted resolvers which claim to do no logging (such as those listed on dnsprivacy.org), to decrease the potential
exposure of your DNS data to a malicious resolver operator.

Replacing part of the DNS tree
Following procedure applies only to domains which have different content publicly and internally. For example this
applies to “your own” top-level domain example. which does not exist in the public (global) DNS namespace.

Dealing with these internal-only domains requires extra configuration because DNS was designed as “single names-
pace” and local modifications like adding your own TLD break this assumption.

Warning: Use of internal names which are not delegated from the public DNS is causing technical problems with
caching and DNSSEC validation and generally makes DNS operation more costly. We recommend against using
these non-delegated names.

To make such internal domain available in your resolver it is necessary to graft your domain onto the public DNS
namespace, but grafting creates new issues:

These grafted domains will be rejected by DNSSEC validation because such domains are technically indistinguishable
from an spoofing attack against the public DNS. Therefore, if you trust the remote resolver which hosts the internal-only
domain, and you trust your link to it, you need to use the policy.STUB() policy instead of policy.FORWARD() to
disable DNSSEC validation for those grafted domains.

Listing 1: Example configuration grafting domains onto public DNS
namespace

extraTrees = policy.todnames(
{'faketldtest.',
'sld.example. ',
'"internal.example.com. ',
'2.0.192.in-addr.arpa.' -- this applies to reverse DNS tree as well
D
-- Beware: the rule order is important, as policy.STUB is not a chain action.
-- Flags: for "dumb" targets disabling EDNS can help (below) as DNSSEC isn't
-- validated anyway; in some of those cases adding 'NO_0X20' can also help,
-- though it also lowers defenses against off-path attacks on communication
-- between the two servers.
-- With kresd <= 5.5.3 you also needed 'NO_CACHE' flag to avoid unintentional
-- NXDOMAINs that could sometimes happen due to aggressive DNSSEC caching.
policy.add(policy.suffix(policy.FLAGS({'NO_EDNS'}), extraTrees))
policy.add(policy.suffix(policy.STUB({'2001:db8::1'}), extraTrees))

54 Chapter 7. Advanced configuration (Lua)

https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+Test+Servers

Knot Resolver, Release 6.0.0a1

Response policy zones

Warning: There is no published Internet Standard for RPZ and implementations vary. At the moment
Knot Resolver supports limited subset of RPZ format and deviates from implementation in BIND.
Nevertheless it is good enough for blocking large lists of spam or advertising domains.

The RPZ file format is basically a DNS zone file with very special semantics. For example:

; left hand side ; TTL and class ; right hand side

; encodes RPZ trigger ; ignored ; encodes action

; (i.e. filter)

blocked.domain.example 600 IN CNAME . ; block main.,
—.domain

*.blocked.domain.example 600 IN CNAME . ; block subdomains

The only “trigger” supported in Knot Resolver is query name, i.e. left hand side must be a domain name
which triggers the action specified on the right hand side.

Subset of possible RPZ actions is supported, namely:

Knot Resolver Action | BIND Compatibility
action is used compatible if actionis policy.DENY

*, policy.ANSWER() yes

RPZ Right Hand Side

rpz-passthru. policy.PASS yes
rpz-tcp-only. policy.TC yes
rpz-drop. policy.DROP no'
fake A/AAAA policy.ANSWER() yes
fake CNAME not supported no

Note: To debug which domains are affected by RPZ (or other policy actions), you can enable the policy

log group:

log_groups({'policy'})

See also non-ASCII support note.

policy.rpz(action, path[, watch = true])

Parameters

* action - the default action for match in the zone; typically you want policy.DENY
» path - path to zone file
» watch - boolean, if true, the file will be reloaded on file change

Enforce RPZ rules. This can be used in conjunction with published blocklist feeds. The RPZ operation is well
described in this Jan-Piet Mens’s post, or the Pro DNS and BIND book.

For example, we can store the example snippet with domain blocked.domain.example (above) into file /
etc/knot-resolver/blocklist.rpz and configure resolver to answer with NXDOMAIN plus the specified
additional text to queries for this domain:

1 Our policy.DROP returns SERVFAIL answer (for historical reasons).

7.6. Policy, access control, data manipulation 55

https://dnsrpz.info/
https://dnsrpz.info/
https://dnsrpz.info/
http://jpmens.net/2011/04/26/how-to-configure-your-bind-resolvers-to-lie-using-response-policy-zones-rpz/
http://www.zytrax.com/books/dns/ch7/rpz.html

Knot Resolver, Release 6.0.0a1

policy.add(
policy.rpz(policy.DENY_MSG('domain blocked by your resolver operator'),

'/etc/knot-resolver/blocklist.rpz’,
true))

Resolver will reload RPZ file at run-time if the RPZ file changes. Recommended RPZ update procedure is to store
new blocklist in a new file (newblocklist.rpz) and then rename the new file to the original file name (blocklist.rpz).
This avoids problems where resolver might attempt to re-read an incomplete file.

Additional properties

Most properties (actions, filters) are described above.

policy.add(rule, postrule)
Parameters
e rule —added rule, i.e. policy.pattern(policy.DENY, '[0-9]+\2cz')

* postrule — boolean, if true the rule will be evaluated on answer instead of query

Returns
rule description

Add a new policy rule that is executed either or queries or answers, depending on the postrule parameter. You

can then use the returned rule description to get information and unique identifier for the rule, as well as match
count.

-- mirror all queries, keep handle so we can retrieve information later
local rule = policy.add(policy.all(policy.MIRROR('127.0.0.2')))

-- we can print statistics about this rule any time later
print(string.format('id: %d, matched queries: %d', rule.id, rule.count)

policy.del(id)
Parameters
id - identifier of a given rule returned by policy.add()

Returns
boolean true if rule was deleted, false otherwise

Remove a rule from policy list.

policy.todnames ({name,...})

Param
names table of domain names in textual format

Returns table of domain names in wire format converted from strings.

-- Convert single name

assert(todname('example.com') == '\7example\3com\0')
-- Convert table of names
policy.todnames({'example.com', 'me.cz'})

{ "\7example\3com\0', '\2me\2cz\0' }

56 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

7.6.2 Views and ACLs

The policy module implements policies for global query matching, e.g. solves “how to react to certain query”. This
module combines it with query source matching, e.g. “who asked the query”. This allows you to create personalized
blacklists, filters and ACLs.

There are two identification mechanisms:
* addr - identifies the client based on his subnet
e tsig - identifies the client based on a TSIG key name (only for testing purposes, TSIG signature is not verified!)

View module allows you to combine query source information with policy rules.

view:addr('10.0.0.1", policy.suffix(policy.TC, policy.todnames({'example.com'})))

This example will force given client to TCP for names in example. com subtree. You can combine view selectors with
RPZ to create personalized filters for example.

Warning: Beware that cache is shared by all requests. For example, it is safe to refuse answer based on who asks
the resolver, but trying to serve different data to different clients will result in unexpected behavior. Setups like
split-horizon which depend on isolated DNS caches are explicitly not supported.

Example configuration

-- Load modules

modules = { 'view' }

-- Whitelist queries identified by TSIG key

view:tsig('\5Smykey', policy.all(policy.PASS))

-- Block local IPv4 clients (ACL like)

view:addr('127.0.0.1", policy.all(policy.DENY))

-- Block local IPv6 clients (ACL like)

view:addr('::1', policy.all(policy.DENY))

-- Drop queries with suffix match for remote client
view:addr('10.0.0.0/8"', policy.suffix(policy.DROP, policy.todnames({'xxx'})))
-- RPZ for subset of clients

view:addr('192.168.1.0/24"', policy.rpz(policy.PASS, 'whitelist.rpz'))
-- Do not try this - it will pollute cache and surprise you!

-- view:addr('10.0.0.0/8', policy.all(policy.FORWARD('2001:DB8::1")))
-- Drop all IPv4 that hasn't matched

view:addr('0.0.0.0/0"', policy.all(policy.DROP))

Rule order
The current implementation is best understood as three separate rule chains: vanilla policy.add, view:tsig and
view:addr. For each request the rules in these chains get tried one by one until a non-chain policy action gets executed.

By default policy module acts before view module due to policy being loaded by default. If you want to intermingle
universal rules with view:addr, you may simply wrap the universal policy rules in view closure like this:

view:addr('0.0.0.0/0', policy.<rule>) -- and
view:addr('::0/0", policy.<rule>)

7.6. Policy, access control, data manipulation 57

https://dnsrpz.info/

Knot Resolver, Release 6.0.0a1

Properties

view:addr(subnet, rule)

Parameters
» subnet — client subnet, e.g. 10.0.0.1
* rule — added rule, e.g. policy.pattern(policy.DENY, '[0-9]+\2cz')
Apply rule to clients in given subnet.

view:tsig(key, rule)

Parameters
* key — client TSIG key domain name, e.g. \ 5mykey
* rule — added rule, e.g. policy.pattern(policy.DENY, '[0-9]+\2cz')
Apply rule to clients with given TSIG key.

Warning: This just selects rule based on the key name, it doesn’t verify the key or signature yet.

7.6.3 Static hints

This is a module providing static hints for forward records (A/AAAA) and reverse records (PTR). The records can be
loaded from /etc/hosts-like files and/or added directly.

You can also use the module to change the root hints; they are used as a safety belt or if the root NS drops out of cache.

Tip: For blocking large lists of domains please use policy.rpz() instead of creating huge list of domains with IP
address 0.0.0.0.

Examples

-- Load hints after iterator (so hints take precedence before caches)
modules = { 'hints > iterate' }
-- Add a custom hosts file
hints.add_hosts('hosts.custom')
-- Override the root hints
hints.root({
['j.root-servers.net.'] = { '2001:503:¢c27::2:30', '192.58.128.30"' }
B
-- Add a custom hint
hints['foo.bar'] = '127.0.0.1"'

Note: The policy module applies before hints, so your hints might get surprisingly shadowed by even default policies.

That most often happens for RFC 6761#section-6 names, e.g. localhost and test or with PTR records in private
address ranges. To unblock the required names, you may use an explicit policy.PASS action.

58 Chapter 7. Advanced configuration (Lua)

https://datatracker.ietf.org/doc/html/rfc6761.html#section-6

Knot Resolver, Release 6.0.0a1

policy.add(policy.suffix(policy.PASS, {todname('1.168.192.in-addr.arpa')}))

This .PASS workaround isn’t ideal. To improve some cases, we recommend to move these .PASS lines to the end of
your rule list. The point is that applying any non-chain action (e.g. forwarding actions or .PASS itself) stops processing
any later policy rules for that request (including the default block-rules). You probably don’t want this . PASS to shadow
any other rules you might have; and on the other hand, if any other non-chain rule triggers, additional . PASS would not
change anything even if it were somehow force-executed.

Properties

hints.config([path])

Parameters
path (string) — path to hosts-like file, default: no file

Returns
{ result: bool }

Clear any configured hints, and optionally load a hosts-like file as in hints.add_hosts(path). (Root hints are
not touched.)

hints.add_hosts([path |)

Parameters
path (string) — path to hosts-like file, default: /etc/hosts

Add hints from a host-like file.

hints.get (hostname)

Parameters
hostname (string) —i.e. "localhost"

Returns
{ result: [addressl, address2, ...] }

Return list of address record matching given name. If no hostname is specified, all hints are returned in the table
format used by hints.root().

hints.set(pair)

Parameters
pair (string) — hostname addressi.e. "localhost 127.0.0.1"

Returns
{ result: bool }

Add a hostname—address pair hint.

Note: If multiple addresses have been added for a name (in separate hints.set () commands), all are returned
in a forward query. If multiple names have been added to an address, the last one defined is returned in a
corresponding PTR query.

hints.del (pair)

Parameters
pair (string) — hostname addressi.e. "localhost 127.0.0.1", or just hostname

7.6. Policy, access control, data manipulation 59

Knot Resolver, Release 6.0.0a1

Returns
{ result: bool }

Remove a hostname - address pair hint. If address is omitted, all addresses for the given name are deleted.

hints.root_file(path)

Replace current root hints from a zonefile. If the path is omitted, the compiled-in path is used, i.e. the root hints
are reset to the default.

hints.root (root_hints)

Parameters

root_hints (table) — new set of root hintsi.e. {['name'] = 'addr', ...}
Returns

{ ['a.root-servers.net.'] = { '1.2.3.4', '5.6.7.8", ...}, ...}

Replace current root hints and return the current table of root hints.

Tip: If no parameters are passed, it only returns current root hints set without changing anything.

Example:

> hints.root({
['l.root-servers.net."']
['m.root-servers.net."']

'199.7.83.42",
'202.12.27.33"

b

[1.root-servers.net.] => {
[1] => 199.7.83.42

}

[m.root-servers.net.] => {
[1] => 202.12.27.33

}

Tip: A good rule of thumb is to select only a few fastest root hints. The server learns RTT and NS quality over
time, and thus tries all servers available. You can help it by preselecting the candidates.

hints.use_nodata(toggle)

Parameters
toggle (bool) — true if enabling NODATA synthesis, false if disabling

Returns
{ result: bool }

If set to true (the default), NODATA will be synthesised for matching hint name, but mismatching type (e.g.
AAAA query when only A hint exists).

hints.ttl([new_ttl])

Parameters
new_ttl (int) — new TTL to set (optional)

Returns
the TTL setting

This function allows to read and write the TTL value used for records generated by the hints module.

60 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

7.6.4 DNS64

The module for RFC 6147 DNS64 AAAA-from-A record synthesis, it is used to enable client-server communication
between an IPv6-only client and an IPv4-only server. See the well written introduction in the PowerDNS documenta-
tion. If no address is passed (i.e. nil), the well-known prefix 64: ££9b: : is used.

Simple example

-- Load the module with default settings
modules = { 'dns64' }

-- Reconfigure later

dns64.config({ prefix = '2001:db8::aabb:0:0" })

Warning: The module currently won’t work well with policy.STUB(). Also, the IPv6 prefix passed in con-
figuration is assumed to be /96.

Tip: The A record sub-requests will be DNSSEC secured, but the synthetic AAAA records can’t be. Make sure the
last mile between stub and resolver is secure to avoid spoofing.

Advanced options

TTL in CNAME generated in the reverse ip6.arpa. subtree is configurable:

dns64.config({ prefix = '2001:db8:77ff::", rev_ttl = 300 })

You can specify a set of IPv6 subnets that are disallowed in answer. If they appear, they will be replaced by AAAAs
generated from As.

dns64.config({

prefix = '2001:db8:3::",

exclude_subnets = { '2001:db8:888::/48"', '::ffff/96' },
D)

-- You could even pass '::/0' to always force using generated AAAAs.

In case you don’t want dns64 for all clients, you can set DNS64_DISABLE flag via the view module.

modules = { 'dns64', 'view' }

-- disable dns64 for all IPv4 source addresses

view:addr('0.0.0.0/0", policy.all(policy.FLAGS('DNS64_DISABLE')))

-- disable dns64 for all IPv6 source addresses

view:addr('::/0", policy.all(policy.FLAGS('DNS64_DISABLE')))

-- re-enable dns64 for two IPv6 subnets

view:addr('2001:db8:11::/48", policy.all(policy.FLAGS(nil, 'DNS64_DISABLE')))
view:addr('2001:db8:93::/48", policy.all(policy.FLAGS(nil, 'DNS64_DISABLE')))

7.6. Policy, access control, data manipulation 61

https://datatracker.ietf.org/doc/html/rfc6147.html
https://doc.powerdns.com/md/recursor/dns64

Knot Resolver, Release 6.0.0a1

7.6.5 IP address renumbering

The module renumbers addresses in answers to different address space. e.g. you can redirect malicious addresses to a
blackhole, or use private address ranges in local zones, that will be remapped to real addresses by the resolver.

Warning: While requests are still validated using DNSSEC, the signatures are stripped from final answer. The
reason is that the address synthesis breaks signatures. You can see whether an answer was valid or not based on the
AD flag.

Example configuration

modules = {
renumber = {

-- Source subnet, destination subnet
{'10.10.10.0/24"', '192.168.1.0'},
-- Remap /16 block to localhost address range
{'166.66.0.0/16"', '127.0.0.0'},
-- Remap /26 subnet (64 ip addresses)
{'166.55.77.128/26"', '127.0.0.192'},
-- Remap a /32 block to a single address
{'2001:db8::/32", '::1!"},

7.6.6 Answer reordering

Certain clients are “dumb” and always connect to first IP address or name found in a DNS answer received from resolver
instead of picking randomly. As a workaround for such broken clients it is possible to randomize order of records in
DNS answers sent by resolver:

reorder_RR([true | false])

Parameters
new_value (boolean) — true to enable or false to disable randomization (optional)

Returns
The (new) value of the option

If set, resolver will vary the order of resource records within RR sets. It is enabled by default since 5.3.0.

7.6.7 Rebinding protection

This module provides protection from DNS Rebinding attack by blocking answers which contain [Pv4 or IPv6 addresses
for private use (or some other special-use addresses).

To enable this module insert following line into your configuration file:

modules.load('rebinding < iterate')

Please note that this module does not offer stable configuration interface yet. For this reason it is suitable mainly for
public resolver operators who do not need to whitelist certain subnets.

62 Chapter 7. Advanced configuration (Lua)

https://en.wikipedia.org/wiki/DNS_rebinding
https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml

Knot Resolver, Release 6.0.0a1

Warning: DNS Blacklists (RFC 5782) often use /27.0.0.0/8 to blacklist a domain. Using the rebinding module
prevents DNSBL from functioning properly.

7.6.8 Refuse queries without RD bit

This module ensures all queries without RD (recursion desired) bit set in query are answered with REFUSED. This
prevents snooping on the resolver’s cache content.

The module is loaded by default. If you’d like to disable this behavior, you can unload it:

modules.unload('refuse_nord")

7.6.9 DNS Application Firewall

This module is a high-level interface for other powerful filtering modules and DNS views. It provides an easy interface
to apply and monitor DNS filtering rules and a persistent memory for them. It also provides a restful service interface
and an HTTP interface.

Example configuration

Firewall rules are declarative and consist of filters and actions. Filters have field operator operand notation (e.g.
gname = example.com), and may be chained using AND/OR keywords. Actions may or may not have parameters
after the action name.

-- Let's write some daft rules!
modules = { 'daf' }

-- Block all queries with QNAME = example.com
daf.add('gname = example.com deny')

-- Filters can be combined using AND/OR...
-- Block all queries with QNAME match regex and coming from given subnet
daf.add('gname ~ %w+.example.com AND src = 192.0.2.0/24 deny')

-- We also can reroute addresses in response to alternate target
-- This reroutes 192.0.2.1 to localhost
daf.add('src = 127.0.0.0/8 reroute 192.0.2.1-127.0.0.1")

-- Subnets work too, this reroutes a whole subnet
-- e.g. 192.0.2.55 to 127.0.0.55
daf.add('src = 127.0.0.0/8 reroute 192.0.2.0/24-127.0.0.0")

-- This rewrites all A answers for 'example.com' from
-- whatever the original address was to 127.0.0.2
daf.add('src = 127.0.0.0/8 rewrite example.com A 127.0.0.2")

-- Mirror queries matching given name to DNS logger
daf.add('gname ~ %w+.example.com mirror 127.0.0.2")
daf.add('gname ~ example-%d.com mirror 127.0.0.3@5353')

(continues on next page)

7.6. Policy, access control, data manipulation 63

https://tools.ietf.org/html/rfc5782#section-2.1

Knot Resolver, Release 6.0.0a1

(continued from previous page)

-- Forward queries from subnet

daf.add('src = 127.0.0.1/8 forward 127.0.0.1@5353")

-- Forward to multiple targets

daf.add('src = 127.0.0.1/8 forward 127.0.0.1@5353,127.0.0.2@5353")

-- Truncate queries based on destination IPs
daf.add('dst = 192.0.2.51 truncate')

-- Disable a rule
daf.disable(2)

-- Enable a rule
daf.enable(2)

-- Delete a rule
daf.del(2)

-- Delete all rules and start from scratch
daf.clear()

Warning: Only the first matching rule’s action is executed. Defining additional actions for the same matching
rule, e.g. src = 127.0.0.1/8, will have no effect.

If you’re not sure what firewall rules are in effect, see daf.rules:

-- Show active rules
> daf.rules
[11 => {
[rule] => {
[count] => 42
[id] == 1
[cb] => function: 0Oxla3eda38
}
[info] => gname = example.com AND src = 127.0.0.1/8 deny
[policy] => function: 0Oxla3eda38

}
[2] => {
[rule] => {
[suspended] => true
[count] => 123522
[id] = 2
[cb] => function: 0xla3ede88
}
[info] => gname ~ %w+.facebook.com AND src = 127.0.0.1/8 deny...
[policy] => function: 0Oxla3ede88
}

64 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

Web interface

If you have HTTP/2 loaded, the firewall automatically loads as a snippet. You can create, track, suspend and remove
firewall rules from the web interface. If you load both modules, you have to load daf after http.

RESTful interface

The module also exports a RESTful API for operations over rule chains.

URL HTTP Action
Verb
/daf GET Return JSON list of active rules.
/daf POST Insert new rule, rule string is expected in body. Returns rule information in
JSON.
/daf/<id> GET Retrieve a rule matching given ID.
/daf/<id> DELETE Delete a rule matching given ID.
/daf/<id>/<prop>/<valy PATCH Modify given rule, for example /daf/3/active/false suspends rule 3.

This interface is used by the web interface for all operations, but you can also use it directly for testing.

Get current rule set
$ curl -s -X GET http://localhost:8453/daf | jq .
{1

Create new rule
$ curl -s -X POST -d "src = 127.0.0.1 pass" http://localhost:8453/daf | jq .
{
"count": O,
"active": true,
"info": "src = 127.0.0.1 pass",
"id": 1
}

Disable rule
$ curl -s -X PATCH http://localhost:8453/daf/1/active/false | jq .
true

Retrieve a rule information
$ curl -s -X GET http://localhost:8453/daf/1 | jq .

{
"count": 4,
"active": true,
"info": "src = 127.0.0.1 pass",
"id": 1
}

Delete a rule
$ curl -s -X DELETE http://localhost:8453/daf/1 | jq .
true

7.6. Policy, access control, data manipulation 65

Knot Resolver, Release 6.0.0a1

7.7 Logging, monitoring, diagnostics

To read service logs use commands usual for your distribution. E.g. on distributions using systemd-journald use
command journalctl -u kresd@* -f.

Knot Resolver supports 6 logging levels - crit, err, warning, notice, info, debug. All levels with the same
meaning as is defined in syslog.h. It is possible change logging level using 1og_level () function.

log_level('debug') -- too verbose for normal usage

Logging level notice is set after start by default, so logs from Knot Resolver should contain only couple lines a day. For
debugging purposes it is possible to use the very verbose debug level, but that is generally not usable unless restricted
in some way (see below).

In addition to levels, logging is also divided into the groups. All groups are logged by default, but you can enable debug
level for selected groups using 1og_groups () function. Other groups are logged to the log level set by 1og_level ().

It is also possible to enable debug logging level for particular requests, with policies or as an HTTP service.

Less verbose logging for DNSSEC validation errors can be enabled by using DNSSEC validation failure logging mod-
ule.

log_level([level])

Param
string 'crit', 'err

, 'warning', 'notice’, 'info' or 'debug’

Returns
string Current logging level.

Pass a string to set the global logging level.

verbose([true | false])
Deprecated since version 5.4.0: Use 1og_Ievel () instead.

Param
true enable debug level, false switch to default level (notice).

Returns
boolean true when debug level is enabled.

Toggle between debug and notice log level. Use only for debugging purposes. On busy systems verbose
logging can produce several MB of logs per second and will slow down operation.

log_target (target)

Param
string 'syslog', 'stderr', 'stdout’

Returns
string Current logging target.

Knot Resolver logs to standard error stream by default, but typical systemd units change that to
'syslog'. That setting logs directly through systemd’s facilities (if available) to preserve more
meta-data.

log_groups([table])

Param
table of string(s) representing log groups

66 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

Returns
table of string with currently set log groups

Use to turn-on debug logging for the selected groups regardless of the global log level. Calling with no argument
lists the currently active log groups. To remove all log groups, call the function with an empty table.

log_groups({'io', 'tls'} -- turn on debug logging for io and tls groups
log_groups() -- list active log groups
log_groups({}) -- remove all log groups

Various statistics for monitoring purposes are available in Statistics collector module, including export to central sys-
tems like Graphite, Metronome, InfluxDB, or Prometheus format.

Resolver Watchdog is tool to detect and recover from potential bugs that cause the resolver to stop responding properly
to queries.

Additional monitoring and debugging methods are described below. If none of these options fits your deployment or
if you have special needs you can configure your own checks and exports using Asynchronous events.

7.7.1 DNSSEC validation failure logging

This module logs a message for each DNSSEC validation failure (on notice level). It is meant to provide hint to
operators which queries should be investigated using diagnostic tools like DNSViz.

Add following line to your configuration file to enable it:

modules.load('bogus_log')

Example of error message logged by this module:

[dnssec] validation failure: dnssec-failed.org. DNSKEY

List of most frequent queries which fail as DNSSEC bogus can be obtained at run-time:

> bogus_log. frequent ()

{
{
['count'] =1,
['name'] = 'dnssec-failed.org.',
['type'] = 'DNSKEY',
1,
{
['count'] = 13,
['name'] = 'rhybar.cz.',
['type'] = 'DNSKEY',
1,
}

Please note that in future this module might be replaced with some other way to log this information.

7.7. Logging, monitoring, diagnostics 67

http://dnsviz.net/

Knot Resolver, Release 6.0.0a1

7.7.2 Statistics collector

Module stats gathers various counters from the query resolution and server internals, and offers them as a key-
value storage. These metrics can be either exported to Graphite/InfluxDB/Metronome, exposed as Prometheus metrics
endpoint, or processed using user-provided script as described in chapter Asynchronous events.

Note: Please remember that each Knot Resolver instance keeps its own statistics, and instances can be started and
stopped dynamically. This might affect your data postprocessing procedures if you are using Multiple instances.

Built-in statistics

Built-in counters keep track of number of queries and answers matching specific criteria.

Global request counters

request.total total number of DNS requests (including internal client requests)

request.internal | internal requests generated by Knot Resolver (e.g. DNSSEC trust anchor updates)
request.udp external requests received over plain UDP (RFC 1035)

request.tcp external requests received over plain TCP (RFC 1035)

request.dot external requests received over DNS-over-TLS (RFC 7858)

request.doh external requests received over DNS-over-HTTP (RFC 8484)

request.xdp external requests received over plain UDP via an AF_XDP socket

Global answer counters

answer.total

total number of answered queries

answer.cached

queries answered from cache

Answers categorized by RCODE

answer.noerror NOERROR answers
answer.nodata NOERROR, but empty answers
answer.nxdomain | NXDOMAIN answers
answer.servfail SERVFAIL answers

Answer latency

answer.lms completed in 1ms
answer.10ms completed in 10ms
answer.50ms completed in 50ms
answer.100ms completed in 100ms
answer.250ms completed in 250ms
answer.500ms completed in 500ms

answer.1000ms

completed in 1000ms

answer.1500ms

completed in 1500ms

answer.slow

completed in more than 1500ms

answer.sum_ms

sum of all latencies in ms

68

Chapter 7. Advanced configuration (Lua)

https://datatracker.ietf.org/doc/html/rfc1035.html
https://datatracker.ietf.org/doc/html/rfc1035.html
https://datatracker.ietf.org/doc/html/rfc7858.html
https://datatracker.ietf.org/doc/html/rfc8484.html

Knot Resolver, Release 6.0.0a1

Answer flags

answer.aa authoritative answer
answer.tc truncated answer

answer.ra recursion available

answer.rd recursion desired (in answer!)
answer.ad authentic data (DNSSEC)
answer.cd checking disabled (DNSSEC)
answer.do DNSSEC answer OK
answer.ednsO | EDNSO present

Query flags
query.edns queries with EDNS present
query.dnssec | queries with DNSSEC DO=1

Example:

modules.load('stats')

-- Enumerate metrics

> stats.list()
[answer.cached] => 486178
[iterator.tcp] => 490
[answer.noerror] => 507367
[answer.total] => 618631
[iterator.udp] => 102408
[query.concurrent] => 149

-- Query metrics by prefix
> stats.list('iter')
[iterator.udp] => 105104
[iterator.tcp] => 490

-- Fetch most common queries
> stats.frequent()
[11 => {

[type] => 2

[count] => 4

[name] => cz.

¥

-- Fetch most common queries (sorted by frequency)
> table.sort(stats.frequent(), function (a, b) return a.count > b.count end)

-- Show recently contacted authoritative servers
> stats.upstreams()
[2a01:618:404::1] => {
[1] => 26 -- RTIT
}
[128.241.220.33] => {
[1] => 31 - RIT
3

(continues on next page)

7.7. Logging, monitoring, diagnostics 69

Knot Resolver, Release 6.0.0a1

(continued from previous page)

-- Set custom metrics from modules
> stats['filter.match'] = 5

> stats['filter.match']

5

Module reference

stats.get (key)

Parameters
key (string) —i.e. "answer.total"

Returns
number

Return nominal value of given metric.

stats.set('key val")

Set nominal value of given metric.

Example:

stats.set('answer.total 5'")
-- or syntactic sugar
stats['answer.total'] = 5

stats. list([preﬁx])

Parameters
prefix (string) — optional metric prefix, i.e. "answer" shows only metrics beginning with
“answer”

Outputs collected metrics as a JSON dictionary.

stats.upstreams()

Outputs a list of recent upstreams and their RTT. It is sorted by time and stored in a ring buffer of a fixed size. This means
it’s not aggregated and readable by multiple consumers, but also that you may lose entries if you don’t read quickly
enough. The default ring size is 512 entries, and may be overridden on compile time by ~-DUPSTREAMS_COUNT=X.

stats. frequent ()

Outputs list of most frequent iterative queries as a JSON array. The queries are sampled probabilistically, and include
subrequests. The list maximum size is 5000 entries, make diffs if you want to track it over time.

stats.clear_frequent()

Clear the list of most frequent iterative queries.

70 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

Graphite/InfluxDB/Metronome

The graphite sends statistics over the Graphite protocol to either Graphite, Metronome, InfluxDB or any compatible
storage. This allows powerful visualization over metrics collected by Knot Resolver.

Tip: The Graphite server is challenging to get up and running, InfluxDB combined with Grafana are much easier, and
provide richer set of options and available front-ends. Metronome by PowerDNS alternatively provides a mini-graphite
server for much simpler setups.

Example configuration:
Only the host parameter is mandatory.

By default the module uses UDP so it doesn’t guarantee the delivery, set tcp = true to enable Graphite over TCP. If
the TCP consumer goes down or the connection with Graphite is lost, resolver will periodically attempt to reconnect
with it.

modules = {

graphite = {
prefix = hostname() .. worker.id, -- optional metric prefix
host = '127.0.0.1', -- graphite server address
port = 2003, -- graphite server port
interval = 5 * sec, -- publish interval
tcp = false -- set to true if you want TCP mode
}

The module supports sending data to multiple servers at once.

modules = {
graphite = {
host = { '"127.0.0.1", '1.2.3.4', "::1" },
}

Dependencies

* lua cqueues package.

Prometheus metrics endpoint

The HTTP module exposes /metrics endpoint that serves metrics from Statistics collector in Prometheus text format.
You can use it as soon as HTTP module is configured:

$ curl -k https://localhost:8453/metrics | tail
TYPE latency histogram

latency_bucket{le=10} 2.000000
latency_bucket{le=50} 2.000000
latency_bucket{le=100} 2.000000
latency_bucket{le=250} 2.000000
latency_bucket{le=500} 2.000000

(continues on next page)

7.7. Logging, monitoring, diagnostics 71

https://graphite.readthedocs.io/en/latest/feeding-carbon.html
https://graphite.readthedocs.io/en/latest/feeding-carbon.html
https://github.com/ahuPowerDNS/metronome
https://influxdb.com/
https://influxdb.com/
http://grafana.org/
https://github.com/ahuPowerDNS/metronome
https://25thandclement.com/~william/projects/cqueues.html
https://prometheus.io

Knot Resolver, Release 6.0.0a1

(continued from previous page)

latency_bucket{le=1000} 2.000000
latency_bucket{le=1500} 2.000000
latency_bucket{le=+Inf} 2.000000
latency_count 2.000000
latency_sum 11.000000

You can namespace the metrics in configuration, using http.prometheus.namespace attribute:

modules.load('http')
-- Set Prometheus namespace
http.prometheus.namespace = 'resolver_

You can also add custom metrics or rewrite existing metrics before they are returned to Prometheus client.

modules.load('http"')

-- Add an arbitrary metric to Prometheus

http.prometheus.finalize = function (metrics)
table.insert(metrics, 'build_info{version="1.2.3"} 1")

end

7.7.3 Scripting worker
Worker is a service over event loop that tracks and schedules outstanding queries, you can see the statistics or schedule
new queries. It also contains information about specified worker count and process rank.

worker.id
Value from environment variable SYSTEMD_INSTANCE, or if it is not set, PID (string).

worker.pid
Current worker process PID (number).

worker.stats()

Return table of statistics. See member descriptions in worker_stats. A few fields are added, mainly from
POSIX getrusage():

e usertime and systime — CPU time used, in seconds

* pagefaults — the number of hard page faults, i.e. those that required I/O activity

* swaps — the number of times the process was “swapped” out of main memory; unused on Linux
* csw — the number of context switches, both voluntary and involuntary

* rss—current memory usage in bytes, including whole cache (resident set size)

Example:

print (worker.stats().concurrent)

72 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

7.7.4 Name Server Identifier (NSID)

Module nsid provides server-side support for RFC 5001 which allows DNS clients to request resolver to send back
its NSID along with the reply to a DNS request. This is useful for debugging larger resolver farms (e.g. when using
Multiple instances, anycast or load balancers).

NSID value can be configured in the resolver’s configuration file:

modules.load('nsid")
nsid.name('instance 1")

Tip: When dealing with Knot Resolver running in multiple instances managed with systemd see Instance-specific
configuration.

You can also obtain configured NSID value:

> nsid.name()
'instance 1'

The module can be disabled at run-time:

modules.unload('nsid")

7.7.5 Debugging a single request
Using query policies
Query policies policy.DEBUG_ALWAYS, policy.DEBUG_CACHE_MISS or policy.DEBUG_IF can be used to enable

debug-level logging for selected subdomains or queries matching specific conditions. Please refer to Actions for extra
logging for more information.

Using HTTP module

The http module provides /trace endpoint which allows to trace various aspects of the request execution. The basic
mode allows you to resolve a query and trace debug-level logs for it (and messages received):

$ curl https://localhost:8453/trace/e.root-servers.net

[8138] [iter] 'e.root-servers.net.' type 'A' created outbound query, parent id 0
[8138] [rc] => rank: 020, lowest 020, e.root-servers.net. A

[8138] [rc] => satisfied from cache

[8138] [iter] <= answer received:

;3 —>>HEADER<<- opcode: QUERY; status: NOERROR; id: 8138

;; Flags: qr aa QUERY: 1; ANSWER: 0; AUTHORITY: O; ADDITIONAL: ©

;35 QUESTION SECTION
e.root-servers.net. A

;3 ANSWER SECTION
e.root-servers.net. 3556353 A 192.203.230.10

(continues on next page)

7.7. Logging, monitoring, diagnostics 73

https://datatracker.ietf.org/doc/html/rfc5001.html

Knot Resolver, Release 6.0.0a1

(continued from previous page)

[8138] [iter] <= rcode: NOERROR
[8138] [resl] finished: 4, queries: 1, mempool: 81952 B

See chapter about Other HTTP services for further instructions how to load webmgmt endpoint into HTTP module, it
is a prerequisite for using /trace.

7.7.6 Watchdog

This module cooperates with Systemd watchdog to restart the process in case the internal event loop gets stuck. The
upstream Systemd unit files are configured to use this feature, which is turned on with the WatchdogSec= directive in
the service file.

As an optional feature, this module can also do an internal DNS query to check if resolver answers correctly. To use
this feature you must configure DNS name and type to query for:

watchdog.config({ gname = 'nic.cz.', qtype = kres.type.A })

Each single query from watchdog must result in answer with RCODE = NOERROR or NXDOMAIN. Any other result
will terminate the resolver (with SIGABRT) to allow the supervisor process to do cleanup, gather coredump and restart
the resolver.

It is recommended to use a name with a very short TTL to make sure the watchdog is testing all parts of resolver and
not only its cache. Obviously this check makes sense only when used with very reliable domains; otherwise a failure
on authoritative side will shutdown resolver!

WatchdogSec specifies deadline for supervisor when the process will be killed. Watchdog queries are executed each
WatchdogSec / 2 seconds. This implies that half of WatchdogSec interval must be long enough for normal DNS query
to succeed, so do not forget to add two or three seconds for random network timeouts etc.

The module is loaded by default. If you’d like to disable it you can unload it:

modules.unload('watchdog')

Beware that unloading the module without disabling watchdog feature in supervisor will lead to infinite restart loop.

7.7.7 Dnstap (traffic collection)
The dnstap module supports logging DNS requests and responses to a unix socket in dnstap format using fstrm framing
library. This logging is useful if you need effectively log all DNS traffic.

The unix socket and the socket reader must be present before starting resolver instances. Also it needs appropriate
filesystem permissions; the typical user and group of the daemon are called knot-resolver.

Tunables:
* socket_path: the unix socket file where dnstap messages will be sent
* identity: identity string as typically returned by an “NSID” (RFC 5001) query, empty by default
* version: version string of the resolver, defaulting to “Knot Resolver major.minor.patch”
e client.log_queries: if true queries from downstream in wire format will be logged

e client.log_responses: if true responses to downstream in wire format will be logged

74 Chapter 7. Advanced configuration (Lua)

https://dnstap.info

Knot Resolver, Release 6.0.0a1

modules = {
dnstap = {
socket_path = "/tmp/dnstap.sock",
identity = nsid.name() or "",
version = "My Custom Knot Resolver
client = {
log_queries = true,
log_responses = true,

. package_version(),

b,

7.7.8 Sentinel for Detecting Trusted Root Keys

The module ta_sentinel implements A Root Key Trust Anchor Sentinel for DNSSEC according to standard RFC
8509.

This feature allows users of DNSSEC validating resolver to detect which root keys are configured in resolver’s chain
of trust. The data from such signaling are necessary to monitor the progress of the DNSSEC root key rollover and to
detect potential breakage before it affect users. One example of research enabled by this module is available here.

This module is enabled by default and we urge users not to disable it. If it is absolutely necessary you may add
modules.unload('ta_sentinel') to your configuration to disable it.

7.7.9 Signaling Trust Anchor Knowledge in DNSSEC

The module for Signaling Trust Anchor Knowledge in DNSSEC Using Key Tag Query, implemented according to RFC
8145#section-5.

This feature allows validating resolvers to signal to authoritative servers which keys are referenced in their chain of trust.
The data from such signaling allow zone administrators to monitor the progress of rollovers in a DNSSEC-signed zone.

This mechanism serve to measure the acceptance and use of new DNSSEC trust anchors and key signing keys (KSKs).
This signaling data can be used by zone administrators as a gauge to measure the successful deployment of new keys.
This is of particular interest for the DNS root zone in the event of key and/or algorithm rollovers that rely on RFC 5011
to automatically update a validating DNS resolver’s trust anchor.

Attention: Experience from root zone KSK rollover in 2018 shows that this mechanism by itself is not sufficient to
reliably measure acceptance of the new key. Nevertheless, some DNS researchers found it is useful in combination
with other data so we left it enabled for now. This default might change once more information is available.

This module is enabled by default. You may use modules.unload('ta_signal_query") in your configuration.

7.7. Logging, monitoring, diagnostics 75

https://datatracker.ietf.org/doc/html/rfc8509.html
https://datatracker.ietf.org/doc/html/rfc8509.html
https://www.potaroo.net/ispcol/2018-11/kskpm.html
https://datatracker.ietf.org/doc/html/rfc8145.html#section-5
https://datatracker.ietf.org/doc/html/rfc8145.html#section-5
https://datatracker.ietf.org/doc/html/rfc5011.html

Knot Resolver, Release 6.0.0a1

7.7.10 System time skew detector

This module compares local system time with inception and expiration time bounds in DNSSEC signatures for . NS
records. If the local system time is outside of these bounds, it is likely a misconfiguration which will cause all DNSSEC
validation (and resolution) to fail.

In case of mismatch, a warning message will be logged to help with further diagnostics.

Warning: Information printed by this module can be forged by a network attacker! System administrator MUST
verify values printed by this module and fix local system time using a trusted source.

This module is useful for debugging purposes. It runs only once during resolver start does not anything after that. It
is enabled by default. You may disable the module by appending modules.unload('detect_time_skew') to your
configuration.

7.7.11 Detect discontinuous jumps in the system time

This module detect discontinuous jumps in the system time when resolver is running. It clears cache when a significant
backward time jumps occurs.

Time jumps are usually created by NTP time change or by admin intervention. These change can affect cache records
as they store timestamp and TTL in real time.

If you want to preserve cache during time travel you should disable this module by modules.
unload('detect_time_jump').

Due to the way monotonic system time works on typical systems, suspend-resume cycles will be perceived as forward
time jumps, but this direction of shift does not have the risk of using records beyond their intended TTL, so forward
jumps do not cause erasing the cache.

7.7.12 Debugging options
In case the resolver crashes, it is often helpful to collect a coredump from the crashed process. Configuring the system
to collect coredump from crashed process is out of the scope of this documentation, but some tips can be found here.

Kresd uses its own mechanism for assertions. They are checks that should always pass and indicate some weird or
unexpected state if they don’t. In such cases, they show up in the log as errors. By default, the process recovers from
those states if possible, but the behaviour can be changed with the following options to aid further debugging.

debugging.assertion_abort = false|true

Return
boolean (default: false in meson’s release mode, true otherwise)

Allow the process to be aborted in case it encounters a failed assertion. (Some critical conditions always lead to
abortion, regardless of settings.)

debugging.assertion_fork = milliseconds

Return
int (default: 5 minutes in meson’s release mode, 0 otherwise)

If a process should be aborted, it can be done in two ways. When this is set to nonzero (default), a child is forked
and aborted to obtain a coredump, while the parent process recovers and keeps running. This can be useful to
debug a rare issue that occurs in production, since it doesn’t affect the main process.

76 Chapter 7. Advanced configuration (Lua)

https://lists.nic.cz/hyperkitty/list/knot-resolver-users@lists.nic.cz/message/GUHW4JSDXZ6SZUAYYQ3U2WWOZEIVVF2S/

Knot Resolver, Release 6.0.0a1

As the dumping can be costly, the value is a lower bound on delay between consecutive coredumps of each

process. It is randomized by +-25% each time.

7.7.13 Logging API

Group names

LOG_GRP_SYSTEM_TAG

system: catch-all log for generic messages

LOG_GRP_CACHE_TAG

cache: operations related to cache

LOG_GRP_IO_TAG

io: input/output operations

LOG_GRP_NETWORK_TAG

net: network configuration and operation

LOG_GRP_TA_TAG

ta: basic log for trust anchors (TA)

LOG_GRP_TASENTINEL_TAG

tasent: TA sentinel

LOG_GRP_TASIGNALING_TAG
tasign: TA signal query

LOG_GRP_TAUPDATE_TAG
taupd: TA update

LOG_GRP_TLS_TAG
tls: TLS encryption layer

LOG_GRP_GNUTLS_TAG
gnutls: low-level logs from GnuTLS

LOG_GRP_TLSCLIENT_TAG
tls_cl: TLS client messages (used for TLS forwarding)

LOG_GRP_XDP_TAG
xdp: operations related to XDP

LOG_GRP_DOH_TAG
doh: DNS-over-HTTPS logger (doh2 implementation)

7.7. Logging, monitoring, diagnostics

77

Knot Resolver, Release 6.0.0a1

LOG_GRP_DNSSEC_TAG
dnssec: operations related to DNSSEC

LOG_GRP_HINT_TAG

hint: operations related to static hints

LOG_GRP_PLAN_TAG

plan: operations related to resolution plan

LOG_GRP_ITERATOR_TAG

iterat: operations related to iterate layer

LOG_GRP_VALIDATOR_TAG

valdtr: operations related to validate layer

LOG_GRP_RESOLVER_TAG

resolv: operations related to resolving

LOG_GRP_SELECTION_TAG

select: operations related to server selection

LOG_GRP_ZCUT_TAG

zonecut: operations related to zone cut

LOG_GRP_COOKIES_TAG

cookie: operations related to cookies

LOG_GRP_STATISTICS_TAG

statis: operations related to statistics

LOG_GRP_REBIND_TAG

rebind: operations related to rebinding

LOG_GRP_WORKER_TAG

worker: operations related to worker layer

LOG_GRP_POLICY_TAG

policy: operations related to policy

LOG_GRP_DAF_TAG
daf: operations related to DAF module

LOG_GRP_DETECTTIMEJUMP_TAG

timejm: operations related to time jump

78

Chapter 7. Advanced configuration (Lua)

Kno