
Knot Resolver
Release 6.0.0a1

CZ.NIC Labs

Jun 05, 2023

GETTING STARTED

1 Installation 3

2 Startup 5

3 Configuration 7

4 Configuration Overview 11

5 Configuration schema 13

6 Listening on network interfaces 15

7 Advanced configuration (Lua) 17

8 Systemd 99

9 Manual 101

10 Docker 103

11 Advanced 105

12 HTTP API 109

13 kresctl utility 113

14 Upgrading to 6.0.0 from 5.x.x 117

15 Upgrading 119

16 Release notes 127

17 System architecture 159

18 Building from sources 163

19 Knot Resolver library 171

20 Modules API reference 243

21 Worker API reference 249

22 Custom HTTP services 253

i

23 Indices and tables 257

Python Module Index 259

Index 261

ii

Knot Resolver, Release 6.0.0a1

Welcome to Knot Resolver’s documentation! Knot Resolver is an opensource implementation of a caching validating
DNS resolver. Modular architecture keeps the core tiny and efficient, and it also provides a state-machine like API for
extensions.

If you are a new user, please start with chapter for getting started.

GETTING STARTED 1

Knot Resolver, Release 6.0.0a1

2 GETTING STARTED

CHAPTER

ONE

INSTALLATION

As a first step, configure your system to use upstream repositories which have the latest version of Knot Resolver.
Follow the instructions below for your distribution.

Note: Please note that the packages available in distribution repositories of Debian and Ubuntu are outdated. Make
sure to follow these steps to use our upstream repositories.

Debian/Ubuntu

$ wget https://secure.nic.cz/files/knot-resolver/knot-resolver-release.deb
$ sudo dpkg -i knot-resolver-release.deb
$ sudo apt update
$ sudo apt install -y knot-resolver

CentOS 7+

$ sudo yum install -y epel-release
$ sudo yum install -y knot-resolver

Fedora

$ sudo dnf install -y knot-resolver

Arch Linux

$ sudo pacman -S knot-resolver

openSUSE Leap/Tumbleweed
Add the OBS package repository home:CZ-NIC:knot-resolver-latest to your system.

Note: If for some reason you need to install Knot Resolver from source, check out building from sources documen-
tation for developers.

3

https://en.opensuse.org/Portal:Build_Service
https://software.opensuse.org/download.html?project=home%3ACZ-NIC%3Aknot-resolver-latest&package=knot-resolver

Knot Resolver, Release 6.0.0a1

4 Chapter 1. Installation

CHAPTER

TWO

STARTUP

The main way to run Knot Resolver is to use provided integration with systemd.

$ sudo systemctl start knot-resolver.service

See logs and status of running instance with systemctl status knot-resolver.service command. For more
information about systemd integration see man knot-resolver.systemd.

Warning: knot-resolver.service is not enabled by default, thus Knot Resolver won’t start automatically after
reboot. To start and enable service in one command use systemctl enable --now knot-resolver.service

Unfortunately, for some cases (typically Docker and minimalistic systems), systemd is not available, therefore it is not
possible to use knot-resolver.service. If you have this problem, look at usage without systemd section.

Note: If for some reason you need to use Knot Resolver as it was before version 6, check out usage without the manager
Otherwise, it is recommended to stick to this chapter.

2.1 First DNS query

After installation and first startup, Knot Resolver’s default configuration accepts queries on loopback interface. This
allows you to test that the installation and service startup were successful before continuing with configuration.

For instance, you can use DNS lookup utility kdig to send DNS queries. The kdig command is provided by following
packages:

Distribution package with kdig
Arch knot
CentOS knot-utils
Debian knot-dnsutils
Fedora knot-utils
OpenSUSE knot-utils
Ubuntu knot-dnsutils

The following query should return list of Root Name Servers:

5

Knot Resolver, Release 6.0.0a1

$ kdig +short @localhost . NS
a.root-servers.net.
...
m.root-servers.net.

6 Chapter 2. Startup

CHAPTER

THREE

CONFIGURATION

Easiest way to configure Knot Resolver is to put YAML configuration in /etc/knot-resolver/config.yml file.

You can start exploring the configuration by continuing in this chapter or look at the complete configuration documen-
tation.

• Listening on network interfaces

• Example: Internal Resolver

• Example: ISP Resolver

• Example: Personal Resolver

Complete examples of configuration files can be found here. Examples are also installed as documentation files, typ-
ically in /usr/share/doc/knot-resolver/examples/ directory (location may be different based on your Linux
distribution).

Tip: You can use kresctl utility to validate your configuration before pushing it into the running resolver. It should
help prevent many typos in the configuration.

$ kresctl validate /etc/knot-resolver/config.yml

If you update the configuration file while Knot Resolver is running, you can force the resolver to reload it by invoking
a systemd reload command.

$ systemctl reload knot-resolver.service

Note: Reloading configuration can fail even when your configuration is valid, because some options cannot be
changed while running. You can always find an explanation of the error in the log accesed by the journalctl -eu
knot-resolver command.

7

https://gitlab.nic.cz/knot/knot-resolver/tree/master/etc/config

Knot Resolver, Release 6.0.0a1

3.1 Listening on network interfaces

The first thing you will probably want to configure are the network interfaces to listen to. The following example
instructs the resolver to receive standard unencrypted DNS queries on 192.0.2.1 and 2001:db8::1 IP addresses.
Encrypted DNS queries using DNS-over-TLS protocol are accepted on all IP addresses of eth0 network interface,
TCP port 853.

network:
listen:
- interface: ['192.0.2.1', '2001:db8::1'] # port 53 is default
- interface: 'eth0'

port: 853
kind: 'dot' # DNS-over-TLS

For more details look at the network configuration.

Warning: On machines with multiple IP addresses on the same interface avoid listening on wildcards 0.0.0.0
or ::. Knot Resolver could answer from different IP addresses if the network address ranges overlap, and clients
would refuse such a response.

3.2 Example: Internal Resolver

This is an example of typical configuration for company-internal resolver which is not accessible from outside of
company network.

3.2.1 Internal-only domains

An internal-only domain is a domain not accessible from the public Internet. In order to resolve internal-only domains
a query policy has to be added to forward queries to a correct internal server. This configuration will forward two listed
domains to a DNS server with IP address 192.0.2.44.

policy:

See chapter Replacing part of the DNS tree for more details.

3.3 Example: ISP Resolver

The following configuration is typical for Internet Service Providers who offer DNS resolver service to their own
clients in their own network. Please note that running a public DNS resolver is more complicated and not covered by
this example.

8 Chapter 3. Configuration

Knot Resolver, Release 6.0.0a1

3.3.1 Limiting client access

With exception of public resolvers, a DNS resolver should resolve only queries sent by clients in its own network. This
restriction limits attack surface on the resolver itself and also for the rest of the Internet.

In a situation where access to DNS resolver is not limited using IP firewall, you can implement access restrictions
which combines query source information with policy rules. Following configuration allows only queries from clients
in subnet 192.0.2.0/24 and refuses all the rest.

view:

policy:

3.3.2 TLS server configuration

Today clients are demanding secure transport for DNS queries between client machine and DNS resolver. The recom-
mended way to achieve this is to start DNS-over-TLS server and accept also encrypted queries.

First step is to enable TLS on listening interfaces:

network:
listen:
- interface: ['192.0.2.1', '2001:db8::1']

kind: 'dot' # DNS-over-TLS, port 853 is default

By default a self-signed certificate is generated. Second step is then obtaining and configuring your own TLS certificates
signed by a trusted CA. Once the certificate was obtained a path to certificate files can be specified:

network:
tls:

cert-file: '/etc/knot-resolver/server-cert.pem'
key-file: '/etc/knot-resolver/server-key.pem'

3.3.3 Mandatory domain blocking

Some jurisdictions mandate blocking access to certain domains. This can be achieved using following policy rule:

policy:

3.4 Example: Personal Resolver

DNS queries can be used to gather data about user behavior. Knot Resolver can be configured to forward DNS queries
elsewhere, and to protect them from eavesdropping by TLS encryption.

Warning: Latest research has proven that encrypting DNS traffic is not sufficient to protect privacy of users. For
this reason we recommend all users to use full VPN instead of encrypting just DNS queries. Following configuration
is provided only for users who cannot encrypt all their traffic. For more information please see following articles:

• Simran Patil and Nikita Borisov. 2019. What can you learn from an IP? (slides, the article itself)

• Bert Hubert. 2019. Centralised DoH is bad for Privacy, in 2019 and beyond

3.4. Example: Personal Resolver 9

https://irtf.org/anrw/2019/slides-anrw19-final44.pdf
https://dl.acm.org/authorize?N687437
https://labs.ripe.net/Members/bert_hubert/centralised-doh-is-bad-for-privacy-in-2019-and-beyond

Knot Resolver, Release 6.0.0a1

3.4.1 Forwarding over TLS protocol (DNS-over-TLS)

Forwarding over TLS protocol protects DNS queries sent out by resolver. It can be configured using TLS forward-
ing which provides methods for authentication. .. It can be configured using policy.TLS_FORWARD which provides
methods for authentication. See list of DNS Privacy Test Servers supporting DNS-over-TLS to test your configuration.

Read more on Forwarding over TLS protocol (DNS-over-TLS).

3.4.2 Forwarding to multiple targets

With the use of slice function, it is possible to split the .. With the use of policy.slice function, it is possible to
split the entire DNS namespace into distinct “slices”. When used in conjunction with TLS forwarding, it’s possible to
forward different queries to different .. policy.TLS_FORWARD, it’s possible to forward different queries to different
remote resolvers. As a result no single remote resolver will get complete list of all queries performed by this client.

Warning: Beware that this method has not been scientifically tested and there might be types of attacks which
will allow remote resolvers to infer more information about the client. Again: If possible encrypt all your traffic
and not just DNS queries!

policy:
TODO

3.4.3 Non-persistent cache

Knot Resolver’s cache contains data clients queried for. If you are concerned about attackers who are able to get access
to your computer system in power-off state and your storage device is not secured by encryption you can move the cache
to tmpfs. See chapter Persistence.

10 Chapter 3. Configuration

https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+Test+Servers
https://en.wikipedia.org/wiki/Tmpfs

CHAPTER

FOUR

CONFIGURATION OVERVIEW

Configuration file is by default named /etc/knot-resolver/config.yml. Different configuration file can be loaded
by using command line option -c / --config.

4.1 Syntax

The configuration file uses YAML format version 1.1. To quickly learn about the format, you can have a look at Learn
YAML in Y minutes.

4.2 Schema

The configuration has to pass a validation step before being used. The validation mainly checks for conformance to our
configuration-schema.

Tip: Whenever a configuration is loaded and the validation fails, we attempt to log a detailed error message explaining
what the problem was. For example, it could look like the following:

If you happen to find a rejected configuration with unhelpful or confusing error message, please report it as a bug.

Tip: An easy way to see the complete configuration structure is to look at the JSON schema represention. The raw
JSON schema is available at this link (valid only for the version of resolver this documentation was generated for). For
the schema readability, some graphical visualizer can be used, for example this one.

11

https://yaml.org/spec/1.1/
https://learnxinyminutes.com/docs/yaml/
https://learnxinyminutes.com/docs/yaml/
https://json-schema.org/
_static/config.schema.json
https://json-schema.app/

Knot Resolver, Release 6.0.0a1

12 Chapter 4. Configuration Overview

CHAPTER

FIVE

CONFIGURATION SCHEMA

The configuration schema describes the structure of accepted configuration files (or objects via the API). While origi-
nally specified in Python source code, it can be visualized as a JSON schema.

5.1 Getting the JSON schema

1. The JSON schema can be obtained from a running Resolver by sending a HTTP GET request to the path /schema
on the management socket (by default a Unix socket at /var/run/knot-resolver/manager.sock).

2. The kresctl schema command outputs the schema of the currently installed version as well. It does not require
a running resolver.

3. JSON schema for the most recent Knot Resolver version can be downloaded here.

5.2 Validating you configuration

As mentioned above, the JSON schema is NOT used to validate the configuration in the Knot Resolver. It’s the other
way around, the validation process can generate JSON schema that can help you understand the configuration structure.
Some validation steps are however dynamic (for example resolving of interface names) and can not be expressed using
JSON schema and cannot be even completed without running full Resolver.

Note: When using the API to change configuration in runtime, your change can be rejected by the validation step
even though Knot Resolver would start just fine with the given changed configuration. Some validation steps within
the Resolver are dynamic and they are dependent on both your previous configuration and the new one. For example,
if you try to change the management socket, the validation will fail even though the new provided address is perfectly
valid. Chaning the management socket while running is not supported.

Most of the validation is however static and you can use the kresctl validate command to check your configuration
file for most errors before actually running the Resolver.

13

https://json-schema.org/
_static/config.schema.json

Knot Resolver, Release 6.0.0a1

5.3 Interactive visualization

The following visualization is interactive and offers good overview of the configuration structure.

5.4 Text-based configuration schema description

Following, you can find the JSON schema flattened textual representation. It’s not meant to be read top-to-bottom,
however it can be used as a quick lookup reference.

14 Chapter 5. Configuration schema

CHAPTER

SIX

LISTENING ON NETWORK INTERFACES

The first thing you will probably need to configure are the network interfaces to listen to.

The following configuration instructs Knot Resolver to receive standard unencrypted DNS queries on IP addresses
192.0.2.1 and 2001:db8::1. Encrypted DNS queries are accepted using DNS-over-TLS protocol on all IP addresses
configured on network interface eth0, TCP port 853.

YAML

network:
listen:
- interface: ['192.0.2.1', '2001:db8::1'] # unencrypted DNS on port 53 is default
- interface: 'eth0'
port: 853
kind: 'dot'

Lua

Network interfaces to listen on and supported protocols are configured using net.listen() function.

-- unencrypted DNS on port 53 is default
net.listen('192.0.2.1')
net.listen('2001:db8::1')
net.listen(net.eth0, 853, { kind = 'tls' })

Warning: On machines with multiple IP addresses on the same interface avoid listening on wildcards 0.0.0.0
or ::. Knot Resolver could answer from different IP addresses if the network address ranges overlap, and clients
would refuse such a response.

15

Knot Resolver, Release 6.0.0a1

16 Chapter 6. Listening on network interfaces

CHAPTER

SEVEN

ADVANCED CONFIGURATION (LUA)

Knot Resolver can be configured declaratively by using YAML files or YAML/JSON HTTP API. However, there
is another option. The actual worker processes (the kresd executable) speaks a different configuration language, it
internally uses the Lua runtime and the respective programming language.

Essentially, the declarative configuration is only used for validation and as an external interface. After validation, a
Lua configuration is generated and passed into individual kresd instances. You can see the generated configuration
files within the Resolver’s working directory or you can manually run the conversion of declarative configuration with
the kresctl convert command.

Warning: While there are no plans of ever removing the Lua configuration, we do not guarantee absence of
backwards incompatible changes. Starting with Knot Resolver version 6 and later, we consider the Lua interface
internal and a subject to change. While we don’t have any breaking changes planned for the foreseeable future, they
might come.

Therefore, use this only when you don’t have any other option. And please let us know about it and we might
try to accomodate your usecase in the declarative configuration.

7.1 Syntax

The configuration file syntax allows you to specify different kinds of data:

• group.option = 123456

• group.option = "string value"

• group.command(123456, "string value")

• group.command({ key1 = "value1", key2 = 222, key3 = "third value" })

• globalcommand(a_parameter_1, a_parameter_2, a_parameter_3, etc)

• -- any text after -- sign is ignored till end of line

Following configuration file snippet starts listening for unencrypted and also encrypted DNS queries on IP address
192.0.2.1, and sets cache size.

-- this is a comment: listen for unencrypted queries
net.listen('192.0.2.1')
-- another comment: listen for queries encrypted using TLS on port 853
net.listen('192.0.2.1', 853, { kind = 'tls' })
-- 10 MB cache is suitable for a very small deployment
cache.size = 10 * MB

17

Knot Resolver, Release 6.0.0a1

Tip: When copy&pasting examples from this manual please pay close attention to brackets and also line ordering -
order of lines matters.

The configuration language is in fact Lua script, so you can use full power of this programming language. See article
Learn Lua in 15 minutes for a syntax overview.

When you modify configuration file on disk restart resolver process to get changes into effect. See chapter Zero-
downtime restarts if even short outages are not acceptable for your deployment.

7.2 Documentation Conventions

Besides text configuration file, Knot Resolver also supports interactive and dynamic configuration using scripts or
external systems, which is described in chapter Run-time reconfiguration. Through this manual we present examples
for both usage types - static configuration in a text file (see above) and also the interactive mode.

The interactive prompt is denoted by >, so all examples starting with > character are transcripts of user (or script)
interaction with Knot Resolver and resolver’s responses. For example:

> -- this is a comment entered into interactive prompt
> -- comments have no effect here
> -- the next line shows a command entered interactively and its output
> log_level()
'notice'
> -- the previous line without > character is output from log_level() command

Following example demonstrates how to interactively list all currently loaded modules, and includes multi-line output:

> modules.list()
{

'iterate',
'validate',
'cache',
'ta_update',
'ta_signal_query',
'policy',
'priming',
'detect_time_skew',
'detect_time_jump',
'ta_sentinel',
'edns_keepalive',
'refuse_nord',
'watchdog',

}

Before we dive into configuring features, let us explain modularization basics.

18 Chapter 7. Advanced configuration (Lua)

http://tylerneylon.com/a/learn-lua/

Knot Resolver, Release 6.0.0a1

7.3 Modules

Knot Resolver functionality consists of separate modules, which allow you to mix-and-match features you need without
slowing down operation by features you do not use.

This practically means that you need to load module before using features contained in it, for example:

-- load module and make dnstap features available
modules.load('dnstap')
-- configure dnstap features
dnstap.config({

socket_path = "/tmp/dnstap.sock"
})

Obviously ordering matters, so you have to load module first and configure it after it is loaded.

Here is full reference manual for module configuration:

modules.list()

Returns
List of loaded modules.

modules.load(name)

Parameters
name (string) – Module name, e.g. “hints”

Returns
true if modules was (or already is) loaded, error otherwise.

Load a module by name.

modules.unload(name)

Parameters
name (string) – Module name, e.g. “detect_time_jump”

Returns
true if modules was unloaded, error otherwise.

Unload a module by name. This is useful for unloading modules loaded by default, mainly for debugging pur-
poses.

Now you know what configuration file to modify, how to read examples and what modules are so you are ready for a
real configuration work!

7.4 Networking and protocols

This section describes configuration of network interfaces and protocols. Please keep in mind that DNS resolvers act
as DNS server and DNS client at the same time, and that these roles require different configuration.

This picture illustrates different actors involved DNS resolution process, supported protocols, and clarifies what we
call server configuration and client configuration.

Attribution: Icons by Bernar Novalyi from the Noun Project

For resolver’s clients the resolver itself acts as a DNS server.

7.3. Modules 19

Knot Resolver, Release 6.0.0a1

After receiving a query the resolver will attempt to find answer in its cache. If the data requested by resolver’s client is
not available in resolver’s cache (so-called cache-miss) the resolver will attempt to obtain the data from servers upstream
(closer to the source of information), so at this point the resolver itself acts like a DNS client and will send DNS query
to other servers.

By default the Knot Resolver works in recursive mode, i.e. the resolver will contact authoritative servers on the Internet.
Optionally it can be configured in forwarding mode, where cache-miss queries are forwarded to another DNS resolver
for processing.

7.4.1 Server (communication with clients)

Addresses and services

Addresses, ports, protocols, and API calls available for clients communicating with resolver are configured using net.
listen().

First you need to decide what service should be available on given IP address + port combination.

Protocol/service net.listen kind
DNS (unencrypted UDP+TCP, RFC 1034) dns
DNS (unencrypted UDP, using XDP Linux API) xdp
DNS-over-TLS (DoT) tls
DNS-over-HTTPS (DoH) doh2
Web management webmgmt
Control socket control
Legacy DNS-over-HTTPS (DoH) doh_legacy

Note: By default, unencrypted DNS and DNS-over-TLS are configured to listen on localhost.
Control sockets are created either in /run/knot-resolver/control/ (when using systemd) or $PWD/control/.

net.listen(addresses[, port = 53, { kind = 'dns', freebind = false }])
Returns

true if port is bound, an error otherwise

Listen on addresses; port and flags are optional. The addresses can be specified as a string or device. Port 853
implies kind = 'tls' but it is always better to be explicit. Freebind allows binding to a non-local or not yet
available address.

Network protocol Configuration command
DNS (UDP+TCP, RFC 1034) net.listen('192.0.2.123', 53)
DNS (UDP, using XDP) net.listen('192.0.2.123', 53, { kind = 'xdp' })
DNS-over-TLS (DoT) net.listen('192.0.2.123', 853, { kind = 'tls' })
DNS-over-HTTPS (DoH) net.listen('192.0.2.123', 443, { kind = 'doh2' })
Web management net.listen('192.0.2.123', 8453, { kind = 'webmgmt' })
Control socket net.listen('/tmp/kres.control', nil, { kind = 'control' })

Examples:

20 Chapter 7. Advanced configuration (Lua)

https://datatracker.ietf.org/doc/html/rfc1034.html
https://datatracker.ietf.org/doc/html/rfc1034.html

Knot Resolver, Release 6.0.0a1

net.listen('::1')
net.listen(net.lo, 53)
net.listen(net.eth0, 853, { kind = 'tls' })
net.listen('192.0.2.1', 53, { freebind = true })
net.listen({'127.0.0.1', '::1'}, 53, { kind = 'dns' })
net.listen('::', 443, { kind = 'doh2' })
net.listen('::', 8453, { kind = 'webmgmt' }) -- see http module
net.listen('/tmp/kresd-socket', nil, { kind = 'webmgmt' }) -- http module␣
→˓supports AF_UNIX
net.listen('eth0', 53, { kind = 'xdp' })
net.listen('192.0.2.123', 53, { kind = 'xdp', nic_queue = 0 })

Warning: On machines with multiple IP addresses avoid listening on wildcards 0.0.0.0 or ::. Knot Resolver
could answer from different IP addresses if the network address ranges overlap, and clients would probably refuse
such a response.

PROXYv2 protocol

Knot Resolver supports proxies that utilize the PROXYv2 protocol to identify clients.

A PROXY header contains the IP address of the original client who sent a query. This allows the resolver to treat
queries as if they actually came from the client’s IP address rather than the address of the proxy they came through.
For example, Views and ACLs are able to work properly when PROXYv2 is in use.

Since allowing usage of the PROXYv2 protocol for all clients would be a security vulnerability, because clients would
then be able to spoof their IP addresses via the PROXYv2 header, the resolver requires you to specify explicitly which
clients are allowed to send PROXYv2 headers via the net.proxy_allowed() function.

PROXYv2 queries from clients who are not explicitly allowed to use this protocol will be discarded.

net.proxy_allowed([addresses])
Allow usage of the PROXYv2 protocol headers by clients on the specified addresses. It is possible to permit
whole networks to send PROXYv2 headers by specifying the network mask using the CIDR notation (e.g. 172.
22.0.0/16). IPv4 as well as IPv6 addresses are supported.

If you wish to allow all clients to use PROXYv2 (e.g. because you have this kind of security handled on another
layer of your network infrastructure), you can specify a netmask of /0. Please note that this setting is address-
family-specific, so this needs to be applied to both IPv4 and IPv6 separately.

Subsequent calls to the function overwrite the effects of all previous calls. Providing a table of strings as the
function parameter allows multiple distinct addresses to use the PROXYv2 protocol.

When called without arguments, net.proxy_allowed returns a table of all addresses currently allowed to use
the PROXYv2 protocol and does not change the configuration.

Examples:

net.proxy_allowed('172.22.0.1') -- allows '172.22.0.1' specifically
net.proxy_allowed('172.18.1.0/24') -- allows everyone at '172.18.1.*'
net.proxy_allowed({

'172.22.0.1', '172.18.1.0/24'
}) -- allows both of the above at once
net.proxy_allowed({ 'fe80::/10' } -- allows everyone at IPv6 link-local
net.proxy_allowed({

(continues on next page)

7.4. Networking and protocols 21

https://www.haproxy.org/download/2.5/doc/proxy-protocol.txt

Knot Resolver, Release 6.0.0a1

(continued from previous page)

'::/0', '0.0.0.0/0'
}) -- allows everyone
net.proxy_allowed('::/0') -- allows all IPv6 (but no IPv4)
net.proxy_allowed({}) -- prevents everyone from using PROXYv2
net.proxy_allowed() -- returns a list of all currently allowed␣
→˓addresses

Features for scripting

Following configuration functions are useful mainly for scripting or Run-time reconfiguration.

net.close(address[, port])
Returns

boolean (at least one endpoint closed)

Close all endpoints listening on the specified address, optionally restricted by port as well.

net.list()

Returns
Table of bound interfaces.

Example output:

[1] => {
[kind] => tls
[transport] => {

[family] => inet4
[ip] => 127.0.0.1
[port] => 853
[protocol] => tcp

}
}
[2] => {

[kind] => dns
[transport] => {

[family] => inet6
[ip] => ::1
[port] => 53
[protocol] => udp

}
}
[3] => {

[kind] => dns
[transport] => {

[family] => inet6
[ip] => ::1
[port] => 53
[protocol] => tcp

}
}
[4] => {

(continues on next page)

22 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

(continued from previous page)

[kind] => xdp
[transport] => {

[family] => inet4+inet6
[interface] => eth2
[nic_queue] => 0
[port] => 53
[protocol] => udp

}
}

net.interfaces()

Returns
Table of available interfaces and their addresses.

Example output:

[lo0] => {
[addr] => {

[1] => ::1
[2] => 127.0.0.1

}
[mac] => 00:00:00:00:00:00

}
[eth0] => {

[addr] => {
[1] => 192.168.0.1

}
[mac] => de:ad:be:ef:aa:bb

}

Tip: You can use net.<iface> as a shortcut for specific interface, e.g. net.eth0

net.tcp_pipeline([len])
Get/set per-client TCP pipeline limit, i.e. the number of outstanding queries that a single client connection can
make in parallel. Default is 100.

> net.tcp_pipeline()
100
> net.tcp_pipeline(50)
50

Warning: Please note that too large limit may have negative impact on performance and can lead to increased
number of SERVFAIL answers.

7.4. Networking and protocols 23

Knot Resolver, Release 6.0.0a1

DoT and DoH (encrypted DNS)

Warning: It is important to understand limits of encrypting only DNS traffic. Relevant security analysis can be
found in article Simran Patil and Nikita Borisov. 2019. What can you learn from an IP? See slides or the article
itself.

DoT and DoH encrypt DNS traffic with Transport Layer Security (TLS) protocol and thus protects DNS traffic from
certain types of attacks.

You can learn more about DoT and DoH and their implementation in Knot Resolver in this article.

DNS-over-TLS (DoT)

DNS-over-TLS server (RFC 7858) can be configured using tls kind in net.listen(). It is enabled on localhost by
default.

For certificate configuration, refer to HTTP status codes.

DNS-over-HTTPS (DoH)

Note: Knot Resolver currently offers two DoH implementations. It is recommended to use this new implementation,
which is more reliable, scalable and has fewer dependencies. Make sure to use doh2 kind in net.listen() to select
this implementation.

Tip: Independent information about political controversies around the DoH deployment by default can be found in
blog posts DNS Privacy at IETF 104 and More DOH by Geoff Huston and Centralised DoH is bad for Privacy, in 2019
and beyond by Bert Hubert.

DNS-over-HTTPS server (RFC 8484) can be configured using doh2 kind in net.listen().

This implementation supports HTTP/2 (RFC 7540). Queries can be sent to the /dns-query endpoint, e.g.:

$ kdig @127.0.0.1 +https www.knot-resolver.cz AAAA

Only TLS version 1.3 (or higher) is supported with DNS-over-HTTPS. The additional considerations for TLS 1.2
required by HTTP/2 are not implemented (RFC 7540#section-9.2).

Warning: Take care when configuring your server to listen on well known HTTPS port. If an unrelated HTTPS
service is running on the same port with REUSEPORT enabled, you will end up with both services malfunctioning.

24 Chapter 7. Advanced configuration (Lua)

https://irtf.org/anrw/2019/slides-anrw19-final44.pdf
https://dl.acm.org/authorize?N687437
https://dl.acm.org/authorize?N687437
https://en.blog.nic.cz/2020/11/25/encrypted-dns-in-knot-resolver-dot-and-doh/
https://datatracker.ietf.org/doc/html/rfc7858.html
http://www.potaroo.net/ispcol/2019-04/angst.html
http://www.potaroo.net/ispcol/2019-04/moredoh.html
https://labs.ripe.net/Members/bert_hubert/centralised-doh-is-bad-for-privacy-in-2019-and-beyond
https://labs.ripe.net/Members/bert_hubert/centralised-doh-is-bad-for-privacy-in-2019-and-beyond
https://datatracker.ietf.org/doc/html/rfc8484.html
https://datatracker.ietf.org/doc/html/rfc7540.html
https://datatracker.ietf.org/doc/html/rfc7540.html#section-9.2

Knot Resolver, Release 6.0.0a1

HTTP status codes

As specified by RFC 8484, the resolver responds with status 200 OK whenever it can produce a valid DNS reply for a
given query, even in cases where the DNS rcode indicates an error (like NXDOMAIN, SERVFAIL, etc.).

For DoH queries malformed at the HTTP level, the resolver may respond with the following status codes:

• 400 Bad Request for a generally malformed query, like one not containing a valid DNS packet

• 404 Not Found when an incorrect HTTP endpoint is queried - the only supported ones are /dns-query and
/doh

• 413 Payload Too Large when the DNS query exceeds its maximum size

• 415 Unsupported Media Type when the query’s Content-Type header is not application/dns-message

• 431 Request Header Fields Too Large when a header in the query is too large to process

• 501 Not Implemented when the query uses a method other than GET, POST, or HEAD

Configuration options for DoT and DoH

Note: These settings affect both DNS-over-TLS and DNS-over-HTTPS (except the legacy implementation).

A self-signed certificate is generated by default. For serious deployments it is strongly recommended to configure your
own TLS certificates signed by a trusted CA. This is done using function net.tls().

net.tls([cert_path][, key_path])
When called with path arguments, the function loads the server TLS certificate and private key for DoT and DoH.

When called without arguments, the command returns the currently configured paths.

Example output:

> net.tls("/etc/knot-resolver/server-cert.pem", "/etc/knot-resolver/server-key.pem")
> net.tls() -- print configured paths
[cert_file] => '/etc/knot-resolver/server-cert.pem'
[key_file] => '/etc/knot-resolver/server-key.pem'

Tip: The certificate files aren’t automatically reloaded on change. If you update the certificate files, e.g. using
ACME, you have to either restart the service(s) or call this function again using Control sockets.

net.tls_sticket_secret([string with pre-shared secret])
Set secret for TLS session resumption via tickets, by RFC 5077.

The server-side key is rotated roughly once per hour. By default or if called without secret, the key is random.
That is good for long-term forward secrecy, but multiple kresd instances won’t be able to resume each other’s
sessions.

If you provide the same secret to multiple instances, they will be able to resume each other’s sessions without
any further communication between them. This synchronization works only among instances having the same
endianness and time_t structure and size (sizeof(time_t)).

For good security the secret must have enough entropy to be hard to guess, and it should still be occasion-
ally rotated manually and securely forgotten, to reduce the scope of privacy leak in case the secret leaks
eventually.

7.4. Networking and protocols 25

https://datatracker.ietf.org/doc/html/rfc8484.html
https://datatracker.ietf.org/doc/html/rfc5077.html
https://en.wikipedia.org/wiki/Forward_secrecy
https://en.wikipedia.org/wiki/Forward_secrecy

Knot Resolver, Release 6.0.0a1

Warning: Setting the secret is probably too risky with TLS <= 1.2 and GnuTLS < 3.7.5. GnuTLS
3.7.5 adds an option to disable resumption via tickets for TLS <= 1.2, enabling them only for protocols
that do guarantee PFS. Knot Resolver makes use of this new option when linked against GnuTLS >=
3.7.5.

net.tls_sticket_secret_file([string with path to a file containing pre-shared secret])
The same as net.tls_sticket_secret(), except the secret is read from a (binary) file.

net.tls_padding([true | false])
Get/set EDNS(0) padding of answers to queries that arrive over TLS transport. If set to true (the default), it will
use a sensible default padding scheme, as implemented by libknot if available at compile time. If set to a numeric
value >= 2 it will pad the answers to nearest padding boundary, e.g. if set to 64, the answer will have size of a
multiple of 64 (64, 128, 192, . . .). If set to false (or a number < 2), it will disable padding entirely.

Configuration options for DoH

net.doh_headers([string or table of strings])
Selects the headers to be exposed. These headers and their values are available in request.qsource.headers.
Comparison is case-insensitive and pseudo-headers are supported as well.

The following snippet can be used in the lua module to access headers :method and user-agent:

net.doh_headers({':method', 'user-agent'})

...

for i = 1, tonumber(req.qsource.headers.len) do
local name = ffi.string(req.qsource.headers.at[i - 1].name)
local value = ffi.string(req.qsource.headers.at[i - 1].value)
print(name, value)

end

Other HTTP services

Tip: In most distributions, the http module is available from a separate package knot-resolver-module-http.
The module isn’t packaged for openSUSE.

This module does the heavy lifting to provide an HTTP and HTTP/2 enabled server which provides few built-in services
and also allows other modules to export restful APIs and websocket streams.

One example is statistics module that can stream live metrics on the website, or publish metrics on request for
Prometheus scraper.

By default this module provides two kinds of endpoints, and unlimited number of “used-defined kinds” can be added
in configuration.

Kind Explanation
webmgmt built-in web management APIs (includes DoH)
doh_legacy Legacy DNS-over-HTTPS (DoH)

26 Chapter 7. Advanced configuration (Lua)

https://en.wikipedia.org/wiki/Forward_secrecy

Knot Resolver, Release 6.0.0a1

Each network address and port combination can be configured to expose one kind of endpoint. This is done using the
same mechanisms as network configuration for plain DNS and DNS-over-TLS, see chapter Networking and protocols
for more details.

Warning: Management endpoint (webmgmt) must not be directly exposed to untrusted parties. Use reverse-proxy
like Apache or Nginx if you need to authenticate API clients for the management API.

By default all endpoints share the same configuration for TLS certificates etc. This can be changed using http.
config() configuration call explained below.

Example configuration

This section shows how to configure HTTP module itself. For information how to configure HTTP server’s IP addresses
and ports please see chapter Networking and protocols.

-- load HTTP module with defaults (self-signed TLS cert)
modules.load('http')
-- optionally load geoIP database for server map
http.config({

geoip = 'GeoLite2-City.mmdb',
-- e.g. https://dev.maxmind.com/geoip/geoip2/geolite2/
-- and install mmdblua library

})

Now you can reach the web services and APIs, done!

$ curl -k https://localhost:8453
$ curl -k https://localhost:8453/stats

HTTPS (TLS for HTTP)

By default, the web interface starts HTTPS/2 on specified port using an ephemeral TLS certificate that is valid for 90
days and is automatically renewed. It is of course self-signed. Why not use something like Let’s Encrypt?

Warning: If you use package luaossl < 20181207, intermediate certificate is not sent to clients, which may
cause problems with validating the connection in some cases.

You can disable unencrypted HTTP and enforce HTTPS by passing tls = true option for all HTTP endpoints:

http.config({
tls = true,

})

It is also possible to provide different configuration for each kind of endpoint, e.g. to enforce TLS and use custom
certificate only for DoH:

http.config({
tls = true,
cert = '/etc/knot-resolver/mycert.crt',

(continues on next page)

7.4. Networking and protocols 27

https://en.wikipedia.org/wiki/Reverse_proxy
https://httpd.apache.org/docs/2.4/howto/reverse_proxy.html
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://letsencrypt.org

Knot Resolver, Release 6.0.0a1

(continued from previous page)

key = '/etc/knot-resolver/mykey.key',
}, 'doh_legacy')

The format of both certificate and key is expected to be PEM, e.g. equivalent to the outputs of following:

openssl ecparam -genkey -name prime256v1 -out mykey.key
openssl req -new -key mykey.key -out csr.pem
openssl req -x509 -days 90 -key mykey.key -in csr.pem -out mycert.crt

It is also possible to disable HTTPS altogether by passing tls = false option. Plain HTTP gets handy if you want to
use reverse-proxy like Apache or Nginx for authentication to API etc. (Unencrypted HTTP could be fine for localhost
tests as, for example, Safari doesn’t allow WebSockets over HTTPS with a self-signed certificate. Major drawback is
that current browsers won’t do HTTP/2 over insecure connection.)

Warning: If you use multiple Knot Resolver instances with these automatically maintained ephemeral certificates,
they currently won’t be shared. It’s assumed that you don’t want a self-signed certificate for serious deployments
anyway.

Legacy DNS-over-HTTPS (DoH)

Warning: The legacy DoH implementation using http module (kind='doh_legacy') is deprecated. It has
known performance and stability issues that won’t be fixed. Use new DNS-over-HTTPS (DoH) implementation
instead.

This was an experimental implementation of RFC 8484. It can be configured using doh_legacy kind in net.
listen(). Its configuration (such as certificates) takes place in http.config().

Queries were served on /doh and /dns-query endpoints.

Built-in services

The HTTP module has several built-in services to use.

Endpoint Service Description
/stats Statistics/metrics Exported metrics from Statistics collector in JSON format.
/metrics Prometheus metrics Exported metrics for Prometheus.
/trace/:name/
:type

Tracking Trace resolution of a DNS query and return its debug-level
logs.

/doh Legacy DNS-over-
HTTPS

RFC 8484 endpoint, see Legacy DNS-over-HTTPS (DoH).

/dns-query Legacy DNS-over-
HTTPS

RFC 8484 endpoint, see Legacy DNS-over-HTTPS (DoH).

28 Chapter 7. Advanced configuration (Lua)

https://en.wikipedia.org/wiki/Reverse_proxy
https://httpd.apache.org/docs/2.4/howto/reverse_proxy.html
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://datatracker.ietf.org/doc/html/rfc8484.html
https://prometheus.io
https://datatracker.ietf.org/doc/html/rfc8484.html
https://datatracker.ietf.org/doc/html/rfc8484.html

Knot Resolver, Release 6.0.0a1

Dependencies

• lua-http (>= 0.3) available in LuaRocks

If you’re installing via Homebrew on OS X, you need OpenSSL too.

$ brew update
$ brew install openssl
$ brew link openssl --force # Override system OpenSSL

Some other systems can install from LuaRocks directly:

$ luarocks --lua-version 5.1 install http

• (optional) mmdblua available in LuaRocks

$ luarocks --lua-version 5.1 install --server=https://luarocks.org/dev␣
→˓mmdblua
$ curl -O https://geolite.maxmind.com/download/geoip/database/GeoLite2-City.
→˓mmdb.gz
$ gzip -d GeoLite2-City.mmdb.gz

7.4.2 Client (retrieving answers from servers)

Following chapters describe basic configuration of how resolver retrieves data from other (upstream) servers. Data pro-
cessing is also affected by configured policies, see chapter Policy, access control, data manipulation for more advanced
usage.

IPv4 and IPv6 usage

Following settings affect client part of the resolver, i.e. communication between the resolver itself and other DNS
servers.

IPv4 and IPv6 protocols are used by default. For performance reasons it is recommended to explicitly disable protocols
which are not available on your system, though the impact of IPv6 outage is lowered since release 5.3.0.

net.ipv4 = true|false

Return
boolean (default: true)

Enable/disable using IPv4 for contacting upstream nameservers.

net.ipv6 = true|false

Return
boolean (default: true)

Enable/disable using IPv6 for contacting upstream nameservers.

net.outgoing_v4([string address])
Get/set the IPv4 address used to perform queries. The default is nil, which lets the OS choose any address.

net.outgoing_v6([string address])
Get/set the IPv6 address used to perform queries. The default is nil, which lets the OS choose any address.

7.4. Networking and protocols 29

https://github.com/daurnimator/lua-http
https://github.com/daurnimator/mmdblua

Knot Resolver, Release 6.0.0a1

Forwarding

Forwarding configuration instructs resolver to forward cache-miss queries from clients to manually specified DNS
resolvers (upstream servers). In other words the forwarding mode does exact opposite of the default recursive mode
because resolver in recursive mode automatically selects which servers to ask.

Main use-cases are:

• Building a tree structure of DNS resolvers to improve performance (by improving cache hit rate).

• Accessing domains which are not available using recursion (e.g. if internal company servers return different
answers than public ones).

• Forwarding through a central DNS traffic filter.

Forwarding implementation in Knot Resolver has following properties:

• Answers from upstream servers are cached.

• Answers from upstream servers are locally DNSSEC-validated, unless policy.STUB() is used.

• Resolver automatically selects which IP address from given set of IP addresses will be used (based on perfor-
mance characteristics).

• Forwarding can use either unencrypted DNS protocol, or Forwarding over TLS protocol (DNS-over-TLS).

Warning: We strongly discourage use of “fake top-level domains” like corp. because these made-up domains
are indistinguishable from an attack, so DNSSEC validation will prevent such domains from working. If you really
need a variant of forwarding which does not DNSSEC-validate received data please see chapter Replacing part of
the DNS tree. In long-term it is better to migrate data into a legitimate, properly delegated domains which do not
suffer from these security problems.

Simple examples for unencrypted forwarding:

-- forward all traffic to specified IP addresses (selected automatically)
policy.add(policy.all(policy.FORWARD({'2001:db8::1', '192.0.2.1'})))

-- forward only queries for names under domain example.com to a single IP address
policy.add(policy.suffix(policy.FORWARD('192.0.2.1'), {todname('example.com.')}))

To configure encrypted version please see chapter Forwarding over TLS protocol (DNS-over-TLS).

Forwarding is documented in depth together with rest of Query policies.

7.4.3 DNS protocol tweaks

DNS protocol tweaks

Following settings change low-level details of DNS protocol implementation. Default values should not be changed
except for very special cases.

net.bufsize([udp_downstream_bufsize][, udp_upstream_bufsize])
Get/set maximum EDNS payload size advertised in DNS packets. Different values can be configured for com-
munication downstream (towards clients) and upstream (towards other DNS servers). Set and also get operations
use values in this order.

Default is 1232 bytes which was chosen to minimize risk of issues caused by IP fragmentation. Further details
can be found at DNS Flag Day 2020 web site.

30 Chapter 7. Advanced configuration (Lua)

https://blog.apnic.net/2019/07/12/its-time-to-consider-avoiding-ip-fragmentation-in-the-dns/
https://www.dnsflagday.net/2020/

Knot Resolver, Release 6.0.0a1

Minimal value allowed by standard RFC 6891 is 512 bytes, which is equal to DNS packet size without Extension
Mechanisms for DNS. Value 1220 bytes is minimum size required by DNSSEC standard RFC 4035.

Example output:

-- set downstream and upstream bufsize to value 4096
> net.bufsize(4096)
-- get configured downstream and upstream bufsizes, respectively
> net.bufsize()
4096 -- result # 1
4096 -- result # 2

-- set downstream bufsize to 4096 and upstream bufsize to 1232
> net.bufsize(4096, 1232)
-- get configured downstream and upstream bufsizes, respectively
> net.bufsize()
4096 -- result # 1
1232 -- result # 2

Module workarounds resolver behavior on specific broken sub-domains. Currently it mainly disables case randomiza-
tion.

modules.load('workarounds < iterate')

7.5 Performance and resiliency

For DNS resolvers, the most important parameter from performance perspective is cache hit rate, i.e. percentage of
queries answered from resolver’s cache. Generally the higher cache hit rate the better.

Performance tunning should start with cache Sizing and Persistence.

It is also recommended to run Multiple instances (even on a single machine!) because it allows to utilize multiple CPU
threads and increases overall resiliency.

Other features described in this section can be used for fine-tunning performance and resiliency of the resolver but
generally have much smaller impact than cache settings and number of instances.

7.5.1 Cache

Cache in Knot Resolver is stored on disk and also shared between Multiple instances so resolver doesn’t lose the cached
data on restart or crash.

To improve performance even further the resolver implements so-called aggressive caching for DNSSEC-validated data
(RFC 8198), which improves performance and also protects against some types of Random Subdomain Attacks.

7.5. Performance and resiliency 31

https://datatracker.ietf.org/doc/html/rfc6891.html
https://datatracker.ietf.org/doc/html/rfc4035.html
https://datatracker.ietf.org/doc/html/rfc8198.html

Knot Resolver, Release 6.0.0a1

Sizing

For personal and small office use-cases cache size around 100 MB is more than enough.

For large deployments we recommend to run Knot Resolver on a dedicated machine, and to allocate 90% of machine’s
free memory for resolver’s cache.

Note: Choosing a cache size that can fit into RAM is important even if the cache is stored on disk (default). Otherwise,
the extra I/O caused by disk access for missing pages can cause performance issues.

For example, imagine you have a machine with 16 GB of memory. After machine restart you use command free -m
to determine amount of free memory (without swap):

$ free -m
total used free

Mem: 15907 979 14928

Now you can configure cache size to be 90% of the free memory 14 928 MB, i.e. 13 453 MB:

-- 90 % of free memory after machine restart
cache.size = 13453 * MB

It is also possible to set the cache size based on the file system size. This is useful if you use a dedicated partition for
cache (e.g. non-persistent tmpfs). It is recommended to leave some free space for special files, such as locks.:

cache.size = cache.fssize() - 10*MB

Note: The Garbage Collector can be used to periodically trim the cache. It is enabled and configured by default when
running kresd with systemd integration.

Persistence

Tip: Using tmpfs for cache improves performance and reduces disk I/O.

By default the cache is saved on a persistent storage device so the content of the cache is persisted during system reboot.
This usually leads to smaller latency after restart etc., however in certain situations a non-persistent cache storage might
be preferred, e.g.:

• Resolver handles high volume of queries and I/O performance to disk is too low.

• Threat model includes attacker getting access to disk content in power-off state.

• Disk has limited number of writes (e.g. flash memory in routers).

If non-persistent cache is desired configure cache directory to be on tmpfs filesystem, a temporary in-memory file
storage. The cache content will be saved in memory, and thus have faster access and will be lost on power-off or reboot.

Note: In most of the Unix-like systems /tmp and /var/run are commonly mounted as tmpfs. While it is technically
possible to move the cache to an existing tmpfs filesystem, it is not recommended, since the path to cache is configured
in multiple places.

32 Chapter 7. Advanced configuration (Lua)

https://en.wikipedia.org/wiki/Tmpfs

Knot Resolver, Release 6.0.0a1

Mounting the cache directory as tmpfs is the recommended approach. Make sure to use appropriate size= option and
don’t forget to adjust the size in the config file as well.

/etc/fstab
tmpfs /var/cache/knot-resolver tmpfs rw,size=2G,uid=knot-resolver,
→˓gid=knot-resolver,nosuid,nodev,noexec,mode=0700 0 0

-- /etc/knot-resolver/kresd.conf
cache.size = cache.fssize() - 10*MB

Configuration reference

cache.open(max_size[, config_uri])
Parameters
max_size (number) – Maximum cache size in bytes.

Returns
true if cache was opened

Open cache with a size limit. The cache will be reopened if already open. Note that the max_size cannot be
lowered, only increased due to how cache is implemented.

Tip: Use kB, MB, GB constants as a multiplier, e.g. 100*MB.

The URI lmdb://path allows you to change the cache directory.

Example:

cache.open(100 * MB, 'lmdb:///var/cache/knot-resolver')

cache.size

Set the cache maximum size in bytes. Note that this is only a hint to the backend, which may or may not respect
it. See cache.open().

cache.size = 100 * MB -- equivalent to `cache.open(100 * MB)`

cache.current_size

Get the maximum size in bytes.

print(cache.current_size)

cache.storage

Set the cache storage backend configuration, see cache.backends() for more information. If the new storage
configuration is invalid, it is not set.

cache.storage = 'lmdb://.'

cache.current_storage

Get the storage backend configuration.

print(cache.current_storage)

7.5. Performance and resiliency 33

https://en.wikipedia.org/wiki/Tmpfs

Knot Resolver, Release 6.0.0a1

cache.backends()

Returns
map of backends

Note: For now there is only one backend implementation, even though the APIs are ready for different (syn-
chronous) backends.

The cache supports runtime-changeable backends, using the optional RFC 3986 URI, where the scheme repre-
sents backend protocol and the rest of the URI backend-specific configuration. By default, it is a lmdb backend
in working directory, i.e. lmdb://.

Example output:

[lmdb://] => true

cache.count()

Returns
Number of entries in the cache. Meaning of the number is an implementation detail and is subject
of change.

cache.close()

Returns
true if cache was closed

Close the cache.

Note: This may or may not clear the cache, depending on the cache backend.

cache.fssize()

Returns
Partition size of cache storage.

cache.stats()

Return table with low-level statistics for internal cache operation and storage. This counts each access to cache
and does not directly map to individual DNS queries or resource records. For query-level statistics see stats
module.

Example:

> cache.stats()
[clear] => 0
[close] => 0
[commit] => 117
[count] => 2
[count_entries] => 6187
[match] => 21
[match_miss] => 2
[open] => 0
[read] => 4313
[read_leq] => 9
[read_leq_miss] => 4

(continues on next page)

34 Chapter 7. Advanced configuration (Lua)

https://datatracker.ietf.org/doc/html/rfc3986.html

Knot Resolver, Release 6.0.0a1

(continued from previous page)

[read_miss] => 1143
[remove] => 17
[remove_miss] => 0
[usage_percent] => 15.625
[write] => 189

Cache operation read_leq (read less or equal, i.e. range search) was requested 9 times, and 4 out of 9 operations
were finished with cache miss. Cache contains 6187 internal entries which occupy 15.625 % cache size.

cache.max_ttl([ttl])
Parameters
ttl (number) – maximum TTL in seconds (default: 1 day)

Returns
current maximum TTL

Get or set upper TTL bound applied to all received records.

Note: The ttl value must be in range (min_ttl, 2147483647).

-- Get maximum TTL
cache.max_ttl()
518400
-- Set maximum TTL
cache.max_ttl(172800)
172800

cache.min_ttl([ttl])
Parameters
ttl (number) – minimum TTL in seconds (default: 5 seconds)

Returns
current minimum TTL

Get or set lower TTL bound applied to all received records. Forcing TTL higher than specified violates DNS
standards, so use higher values with care. TTL still won’t be extended beyond expiration of the corresponding
DNSSEC signature.

Note: The ttl value must be in range <0, max_ttl).

-- Get minimum TTL
cache.min_ttl()
0
-- Set minimum TTL
cache.min_ttl(5)
5

cache.ns_tout([timeout])

7.5. Performance and resiliency 35

Knot Resolver, Release 6.0.0a1

Parameters
timeout (number) – NS retry interval in milliseconds (default:
KR_NS_TIMEOUT_RETRY_INTERVAL)

Returns
current timeout

Get or set time interval for which a nameserver address will be ignored after determining that it doesn’t return
(useful) answers. The intention is to avoid waiting if there’s little hope; instead, kresd can immediately SERV-
FAIL or immediately use stale records (with serve_stale module).

Warning: This settings applies only to the current kresd process.

cache.get([domain])
This function is not implemented at this moment. We plan to re-introduce it soon, probably with a slightly
different API.

cache.clear([name][, exact_name][, rr_type][, chunk_size][, callback][, prev_state])
Purge cache records matching specified criteria. There are two specifics:

• To reliably remove negative cache entries you need to clear subtree with the whole zone. E.g. to
clear negative cache entries for (formerly non-existing) record www.example.com. A you need to
flush whole subtree starting at zone apex, e.g. example.com.1.

• This operation is asynchronous and might not be yet finished when call to cache.clear() func-
tion returns. Return value indicates if clearing continues asynchronously or not.

Parameters
• name (string) – subtree to purge; if the name isn’t provided, whole cache is purged (and

any other parameters are disregarded).

• exact_name (bool) – if set to true, only records with the same name are removed; default:
false.

• rr_type (kres.type) – you may additionally specify the type to remove, but that is only
supported with exact_name == true; default: nil.

• chunk_size (integer) – the number of records to remove in one round; default: 100. The
purpose is not to block the resolver for long. The default callback repeats the command
after one millisecond until all matching data are cleared.

• callback (function) – a custom code to handle result of the underlying C call. Its param-
eters are copies of those passed to cache.clear() with one additional parameter rettable
containing table with return value from current call. count field contains a return code from
kr_cache_remove_subtree().

• prev_state (table) – return value from previous run (can be used by callback)

Return type
table

Returns
count key is always present. Other keys are optional and their presence indicate special condi-
tions.

1 This is a consequence of DNSSEC negative cache which relies on proofs of non-existence on various owner nodes. It is impossible to efficiently
flush part of DNS zones signed with NSEC3.

36 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

• count (integer) - number of items removed from cache by this call (can be 0 if no entry
matched criteria)

• not_apex - cleared subtree is not cached as zone apex; proofs of non-existence were probably
not removed

• subtree (string) - hint where zone apex lies (this is estimation from cache content and might
not be accurate)

• chunk_limit - more than chunk_size items needs to be cleared, clearing will continue
asynchronously

Examples:

-- Clear whole cache
> cache.clear()
[count] => 76

-- Clear records at and below 'com.'
> cache.clear('com.')
[chunk_limit] => chunk size limit reached; the default callback will continue␣
→˓asynchronously
[not_apex] => to clear proofs of non-existence call cache.clear('com.')
[count] => 100
[round] => 1
[subtree] => com.
> worker.sleep(0.1)
[cache] asynchronous cache.clear('com', false) finished

-- Clear only 'www.example.com.'
> cache.clear('www.example.com.', true)
[round] => 1
[count] => 1
[not_apex] => to clear proofs of non-existence call cache.clear('example.com.')
[subtree] => example.com.

7.5.2 Multiple instances

Note: This section describes the usage of kresd when running under systemd. For other uses, please refer to usage-
without-systemd.

Knot Resolver can utilize multiple CPUs running in multiple independent instances (processes), where each process
utilizes at most single CPU core on your machine. If your machine handles a lot of DNS traffic run multiple instances.

All instances typically share the same configuration and cache, and incoming queries are automatically distributed by
operating system among all instances.

Advantage of using multiple instances is that a problem in a single instance will not affect others, so a single instance
crash will not bring whole DNS resolver service down.

Tip: For maximum performance, there should be as many kresd processes as there are available CPU threads.

To run multiple instances, use a different identifier after @ sign for each instance, for example:

7.5. Performance and resiliency 37

Knot Resolver, Release 6.0.0a1

$ systemctl start kresd@1.service
$ systemctl start kresd@2.service
$ systemctl start kresd@3.service
$ systemctl start kresd@4.service

With the use of brace expansion in BASH the equivalent command looks like this:

$ systemctl start kresd@{1..4}.service

For more details see kresd.systemd(7).

Zero-downtime restarts

Resolver restart normally takes just milliseconds and cache content is persistent to avoid performance drop after restart.
If you want real zero-downtime restarts use multiple instances and do rolling restart, i.e. restart only one resolver process
at a time.

On a system with 4 instances run these commands sequentially:

$ systemctl restart kresd@1.service
$ systemctl restart kresd@2.service
$ systemctl restart kresd@3.service
$ systemctl restart kresd@4.service

At any given time only a single instance is stopped and restarted so remaining three instances continue to service clients.

Instance-specific configuration

Instances can use arbitrary identifiers for the instances, for example we can name instances like dns1, tls and so on.

$ systemctl start kresd@dns1
$ systemctl start kresd@dns2
$ systemctl start kresd@tls
$ systemctl start kresd@doh

The instance name is subsequently exposed to kresd via the environment variable SYSTEMD_INSTANCE. This can be
used to tell the instances apart, e.g. when using the Name Server Identifier (NSID) module with per-instance configu-
ration:

local systemd_instance = os.getenv("SYSTEMD_INSTANCE")

modules.load('nsid')
nsid.name(systemd_instance)

More arcane set-ups are also possible. The following example isolates the individual services for classic DNS, DoT
and DoH from each other.

local systemd_instance = os.getenv("SYSTEMD_INSTANCE")

if string.match(systemd_instance, '^dns') then
net.listen('127.0.0.1', 53, { kind = 'dns' })

elseif string.match(systemd_instance, '^tls') then
net.listen('127.0.0.1', 853, { kind = 'tls' })

(continues on next page)

38 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

(continued from previous page)

elseif string.match(systemd_instance, '^doh') then
net.listen('127.0.0.1', 443, { kind = 'doh2' })

else
panic("Use kresd@dns*, kresd@tls* or kresd@doh* instance names")

end

7.5.3 Prefetching records

The predict module helps to keep the cache hot by prefetching records. It can utilize two independent mechanisms
to select the records which should be refreshed: expiring records and prediction.

Expiring records

This mechanism is always active when the predict module is loaded and it is not configurable.

Any time the resolver answers with records that are about to expire, they get refreshed. (see is_expiring()) That
improves latency for records which get frequently queried, relatively to their TTL.

Prediction

The predict module can also learn usage patterns and repetitive queries, though this mechanism is a prototype and not
recommended for use in production or with high traffic.

For example, if it makes a query every day at 18:00, the resolver expects that it is needed by that time and prefetches it
ahead of time. This is helpful to minimize the perceived latency and keeps the cache hot.

You can disable prediction by configuring period = 0. Otherwise it will load the required stats module if not present,
and it will use its stats.frequent() table and clear it periodically.

Tip: The tracking window and period length determine memory requirements. If you have a server with relatively
fast query turnover, keep the period low (hour for start) and shorter tracking window (5 minutes). For personal slower
resolver, keep the tracking window longer (i.e. 30 minutes) and period longer (a day), as the habitual queries occur
daily. Experiment to get the best results.

Example configuration

modules = {
predict = {

-- this mode is NOT RECOMMENDED for use in production
window = 15, -- 15 minutes sampling window
period = 6*(60/15) -- track last 6 hours

}
}

7.5. Performance and resiliency 39

Knot Resolver, Release 6.0.0a1

Exported metrics

To visualize the efficiency of the predictions, the module exports following statistics.

• predict.epoch - current prediction epoch (based on time of day and sampling window)

• predict.queue - number of queued queries in current window

• predict.learned - number of learned queries in current window

Properties

predict.config({ window = 15, period = 24})
Reconfigure the predictor to given tracking window and period length. Both parameters are optional. Window
length is in minutes, period is a number of windows that can be kept in memory. e.g. if a window is 15 minutes,
a period of “24” means 6 hours.

7.5.4 Cache prefilling

This module provides ability to periodically prefill the DNS cache by importing root zone data obtained over HTTPS.

Intended users of this module are big resolver operators which will benefit from decreased latencies and smaller amount
of traffic towards DNS root servers.

Example configuration is:

modules.load('prefill')
prefill.config({

['.'] = {
url = 'https://www.internic.net/domain/root.zone',
interval = 86400, -- seconds
ca_file = '/etc/pki/tls/certs/ca-bundle.crt', -- optional

}
})

This configuration downloads the zone file from URL https://www.internic.net/domain/root.zone and imports it into
the cache every 86400 seconds (1 day). The HTTPS connection is authenticated using a CA certificate from file
/etc/pki/tls/certs/ca-bundle.crt and signed zone content is validated using DNSSEC.

The root zone to be imported must be signed using DNSSEC and the resolver must have a valid DNSSEC configuration.

Param-
eter

Description

ca_file path to CA certificate bundle used to authenticate the HTTPS connection (optional, system-wide store
will be used if not specified)

interval number of seconds between zone data refresh attempts
url URL of a file in RFC 1035 zone file format

Only root zone import is supported at the moment.

40 Chapter 7. Advanced configuration (Lua)

https://datatracker.ietf.org/doc/html/rfc1035.html

Knot Resolver, Release 6.0.0a1

Dependencies

Prefilling depends on the lua-http library.

7.5.5 Serve stale

Demo module that allows using timed-out records in case kresd is unable to contact upstream servers.

By default it allows stale-ness by up to one day, after roughly four seconds trying to contact the servers. It’s quite
configurable/flexible; see the beginning of the module source for details. See also the RFC draft (not fully followed)
and cache.ns_tout.

Running

modules = { 'serve_stale < cache' }

7.5.6 Root on loopback (RFC 7706)

Knot Resolver developers think that literal implementation of RFC 7706 (“Decreasing Access Time to Root Servers
by Running One on Loopback”) is a bad idea so it is not implemented in the form envisioned by the RFC.

You can get the very similar effect without its downsides by combining Cache prefilling and Serve stale modules
with Aggressive Use of DNSSEC-Validated Cache (RFC 8198) behavior which is enabled automatically together with
DNSSEC validation.

7.5.7 Priming module

The module for Initializing a DNS Resolver with Priming Queries implemented according to RFC 8109. Purpose of
the module is to keep up-to-date list of root DNS servers and associated IP addresses.

Result of successful priming query replaces root hints distributed with the resolver software. Unlike other DNS re-
solvers, Knot Resolver caches result of priming query on disk and keeps the data between restarts until TTL expires.

This module is enabled by default; you may disable it by adding modules.unload('priming') to your configuration.

7.5.8 EDNS keepalive

The edns_keepalive module implements RFC 7828 for clients connecting to Knot Resolver via TCP and TLS. The
module just allows clients to discover the connection timeout, client connections are always timed-out the same way
regardless of clients sending the EDNS option.

When connecting to servers, Knot Resolver does not send this EDNS option. It still attempts to reuse established
connections intelligently.

This module is loaded by default. For debugging purposes it can be unloaded using standard means:

modules.unload('edns_keepalive')

7.5. Performance and resiliency 41

https://luarocks.org/modules/daurnimator/http
https://tools.ietf.org/html/draft-ietf-dnsop-serve-stale-00
https://datatracker.ietf.org/doc/html/rfc7706.html
https://datatracker.ietf.org/doc/html/rfc8198.html
https://datatracker.ietf.org/doc/html/rfc8109.html
https://datatracker.ietf.org/doc/html/rfc7828.html

Knot Resolver, Release 6.0.0a1

7.5.9 XDP for higher UDP performance

Warning: As of version 5.2.0, XDP support in Knot Resolver is considered experimental. The impact on overall
throughput and performance may not always be beneficial.

Using XDP allows significant speedup of UDP packet processing in recent Linux kernels, especially with some network
drivers that implement good support. The basic idea is that for selected packets the Linux networking stack is bypassed,
and some drivers can even directly use the user-space buffers for reading and writing.

Prerequisites

Warning: Bypassing the network stack has significant implications, such as bypassing the firewall and monitoring
solutions. Make sure you’re familiar with the trade-offs before using this feature. Read more in Limitations.

• Linux kernel 4.18+ (5.x+ is recommended for optimal performance) compiled with the CON-
FIG_XDP_SOCKETS=y option. XDP isn’t supported in other operating systems.

• libknot compiled with XDP support

• A multiqueue network card with native XDP support is highly recommended, otherwise the performance
gain will be much lower and you may encounter issues due to XDP emulation. Successfully tested cards:

– Intel series 700 (driver i40e), maximum number of queues per interface is 64.

– Intel series 500 (driver ixgbe), maximum number of queues per interface is 64. The number of CPUs
available has to be at most 64!

Set up

The server instances need additional Linux capabilities during startup. (Or you could start them as root.) Execute
command

systemctl edit kresd@.service

And insert these lines:

[Service]
CapabilityBoundingSet=CAP_NET_RAW CAP_NET_ADMIN CAP_SYS_ADMIN CAP_IPC_LOCK CAP_SYS_
→˓RESOURCE
AmbientCapabilities=CAP_NET_RAW CAP_NET_ADMIN CAP_SYS_ADMIN CAP_IPC_LOCK CAP_SYS_RESOURCE

The CAP_SYS_RESOURCE is only needed on Linux < 5.11.

You want the same number of kresd instances and network queues on your card; you can use ethtool -L before the
services start. With XDP this is more important than with vanilla UDP, as we only support one instance per queue and
unclaimed queues will fall back to vanilla UDP. Ideally you can set these numbers as high as the number of CPUs that
you want kresd to use.

Modification of /etc/knot-resolver/kresd.conf may often be quite simple, for example:

net.listen('eth2', 53, { kind = 'xdp' })
net.listen('203.0.113.53', 53, { kind = 'dns' })

42 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

Note that you want to also keep the vanilla DNS line to service TCP and possibly any fallback UDP (e.g. from unclaimed
queues). XDP listening is in principle done on queues of whole network interfaces and the target addresses of incoming
packets aren’t checked in any way, but you are still allowed to specify interface by an address (if it’s unambiguous at
that moment):

net.listen('203.0.113.53', 53, { kind = 'xdp' })
net.listen('203.0.113.53', 53, { kind = 'dns' })

The default selection of queues is tailored for the usual naming convention: kresd@1.service, kresd@2.service,
. . . but you can still specify them explicitly, e.g. the default is effectively the same as:

net.listen('eth2', 53, { kind = 'xdp', nic_queue = env.SYSTEMD_INSTANCE - 1 })

Optimizations

Some helpful commands:

ethtool -N <interface> rx-flow-hash udp4 sdfn
ethtool -N <interface> rx-flow-hash udp6 sdfn
ethtool -L <interface> combined <queue-number>
ethtool -G <interface> rx <ring-size> tx <ring-size>
renice -n 19 -p $(pgrep '^ksoftirqd/[0-9]*$')

Limitations

• VLAN segmentation is not supported.

• MTU higher than 1792 bytes is not supported.

• Multiple BPF filters per one network device are not supported.

• Symmetrical routing is required (query source MAC/IP addresses and reply destination MAC/IP addresses are
the same).

• Systems with big-endian byte ordering require special recompilation of libknot.

• IPv4 header and UDP checksums are not verified on received DNS messages.

• DNS over XDP traffic is not visible to common system tools (e.g. firewall, tcpdump etc.).

• BPF filter is not automatically unloaded from the network device. Manual filter unload:

ip link set dev <interface> xdp off

• Knot Resolver only supports using XDP towards clients currently (not towards upstreams).

• When starting up an XDP socket you may get a harmless warning:

libbpf: Kernel error message: XDP program already attached

7.5. Performance and resiliency 43

Knot Resolver, Release 6.0.0a1

7.6 Policy, access control, data manipulation

Features in this section allow to configure what clients can get access to what DNS data, i.e. DNS data filtering and
manipulation.

Query policies specify global policies applicable to all requests, e.g. for blocking access to particular domain. Views
and ACLs allow to specify per-client policies, e.g. block or unblock access to a domain only for subset of clients.

It is also possible to modify data returned to clients, either by providing Static hints (answers with statically configured
IP addresses), DNS64 translation, or IP address renumbering.

Additional modules offer protection against various DNS-based attacks, see Rebinding protection and Refuse queries
without RD bit.

At the very end, module DNS Application Firewall provides HTTP API for run-time policy modification, and generally
just offers different interface for previously mentioned features.

7.6.1 Query policies

This module can block, rewrite, or alter inbound queries based on user-defined policies. It does not affect queries
generated by the resolver itself, e.g. when following CNAME chains etc.

Each policy rule has two parts: a filter and an action. A filter selects which queries will be affected by the policy, and
action which modifies queries matching the associated filter.

Typically a rule is defined as follows: filter(action(action parameters), filter parameters). For ex-
ample, a filter can be suffix which matches queries whose suffix part is in specified set, and one of possible ac-
tions is policy.DENY , which denies resolution. These are combined together into policy.suffix(policy.DENY,
{todname('badguy.example.')}). The rule is effective when it is added into rule table using policy.add(),
please see examples below.

This module is enabled by default because it implements mandatory RFC 6761 logic. When no rule applies to a query,
built-in rules for special-use and locally-served domain names are applied. These rules can be overridden by action
policy.PASS. For debugging purposes you can also add modules.unload('policy') to your config to unload the
module.

Filters

A filter selects which queries will be affected by specified Actions. There are several policy filters available in the
policy. table:

policy.all(action)
Always applies the action.

policy.pattern(action, pattern)
Applies the action if query name matches a Lua regular expression.

policy.suffix(action, suffix_table)
Applies the action if query name suffix matches one of suffixes in the table (useful for “is domain in zone” rules).

policy.add(policy.suffix(policy.DENY, policy.todnames({'example.com', 'example.net'}
→˓)))

44 Chapter 7. Advanced configuration (Lua)

https://datatracker.ietf.org/doc/html/rfc6761.html
https://www.iana.org/assignments/special-use-domain-names/special-use-domain-names.xhtml
http://www.iana.org/assignments/locally-served-dns-zones
http://lua-users.org/wiki/PatternsTutorial

Knot Resolver, Release 6.0.0a1

Note: For speed this filter requires domain names in DNS wire format, not textual representation, so each label
in the name must be prefixed with its length. Always use convenience function policy.todnames() for automatic
conversion from strings! For example:

Note: Non-ASCII is not supported.

Knot Resolver does not provide any convenience support for IDN. Therefore everywhere (all configuration, logs, RPZ
files) you need to deal with the xn-- forms of domain name labels, instead of directly using unicode characters.

policy.domains(action, domain_table)
Like policy.suffix() match, but the queried name must match exactly, not just its suffix.

policy.suffix_common(action, suffix_table[, common_suffix])
Parameters

• action – action if the pattern matches query name

• suffix_table – table of valid suffixes

• common_suffix – common suffix of entries in suffix_table

Like policy.suffix() match, but you can also provide a common suffix of all matches for faster processing
(nil otherwise). This function is faster for small suffix tables (in the order of “hundreds”).

It is also possible to define custom filter function with any name.

policy.custom_filter(state, query)

Parameters
• state – Request processing state kr_layer_state, typically not used by filter function.

• query – Incoming DNS query as kr_query structure.

Returns
An action function or nil if filter did not match.

Typically filter function is generated by another function, which allows easy parametrization - this technique is
called closure. An practical example of such filter generator is:

function match_query_type(action, target_qtype)
return function (state, query)

if query.stype == target_qtype then
-- filter matched the query, return action function
return action

else
-- filter did not match, continue with next filter
return nil

end
end

end

This custom filter can be used as any other built-in filter. For example this applies our custom filter and executes action
policy.DENY on all queries of type HINFO:

7.6. Policy, access control, data manipulation 45

https://en.wikipedia.org/wiki/Internationalized_domain_name#Example_of_IDNA_encoding
https://www.lua.org/pil/6.1.html

Knot Resolver, Release 6.0.0a1

-- custom filter which matches HINFO queries, action is policy.DENY
policy.add(match_query_type(policy.DENY, kres.type.HINFO))

Actions

An action is a function which modifies DNS request, and is either of type chain or non-chain:

• Non-chain actions modify state of the request and stop rule processing. An example of such action is Forwarding.

• Chain actions modify state of the request and allow other rules to evaluate and act on the same request. One such
example is policy.MIRROR().

Non-chain actions

Following actions stop the policy matching on the query, i.e. other rules are not evaluated once rule with following
actions matches:

policy.PASS

Let the query pass through; it’s useful to make exceptions before wider rules. For example:

More specific whitelist rule must precede generic blacklist rule:

-- Whitelist 'good.example.com'
policy.add(policy.pattern(policy.PASS, todname('good.example.com.')))
-- Block all names below example.com
policy.add(policy.suffix(policy.DENY, {todname('example.com.')}))

policy.DENY

Deny existence of names matching filter, i.e. reply NXDOMAIN authoritatively.

policy.DENY_MSG(message[, extended_error=kres.extended_error.BLOCKED])
Deny existence of a given domain and add explanatory message. NXDOMAIN reply contains an additional
explanatory message as TXT record in the additional section.

You may override the extended DNS error to provide the user with more information. By default, BLOCKED is
returned to indicate the domain is blocked due to the internal policy of the operator. Other suitable error codes
are CENSORED (for externally imposed policy reasons) or FILTERED (for blocking requested by the client). For
more information, please refer to RFC 8914.

policy.DROP

Terminate query resolution and return SERVFAIL to the requestor.

policy.REFUSE

Terminate query resolution and return REFUSED to the requestor.

policy.NO_ANSWER

Terminate query resolution and do not return any answer to the requestor.

Warning: During normal operation, an answer should always be returned. Deliberate query drops are
indistinguishable from packet loss and may cause problems as described in RFC 8906. Only use NO_ANSWER
on very specific occasions, e.g. as a defense mechanism during an attack, and prefer other actions (e.g. DROP
or REFUSE) for normal operation.

46 Chapter 7. Advanced configuration (Lua)

https://datatracker.ietf.org/doc/html/rfc8914.html
https://datatracker.ietf.org/doc/html/rfc8906.html

Knot Resolver, Release 6.0.0a1

policy.TC

Force requestor to use TCP. It sets truncated bit (TC) in response to true if the request came through UDP, which
will force standard-compliant clients to retry the request over TCP.

policy.REROUTE({subnet = target, ...})
Reroute IP addresses in response matching given subnet to given target, e.g. {['192.0.2.0/24'] = '127.0.
0.0'}will rewrite ‘192.0.2.55’ to ‘127.0.0.55’, see renumber module for more information. See policy.add()
and do not forget to specify that this is postrule. Quick example:

-- this policy is enforced on answers
-- therefore we have to use 'postrule'
-- (the "true" at the end of policy.add)
policy.add(policy.all(policy.REROUTE({['192.0.2.0/24'] = '127.0.0.0'})), true)

policy.ANSWER({ type = { rdata=data, [ttl=1] } }, [nodata=false])
Overwrite Resource Records in responses with specified values.

• type - RR type to be replaced, e.g. [kres.type.A] or numeric value.

• rdata - RR data in DNS wire format, i.e. binary form specific for given RR type. Set of multiple RRs
can be specified as table { rdata1, rdata2, ... }. Use helper function kres.str2ip() to generate
wire format for A and AAAA records. Wire format for other record types can be generated with kres.
parse_rdata().

• ttl - TTL in seconds. Default: 1 second.

• nodata - If type requested by client is not configured in this policy:

– true: Return empty answer (NODATA).

– false: Ignore this policy and continue processing other rules.

Default: false.

-- policy to change IPv4 address and TTL for example.com
policy.add(

policy.domains(
policy.ANSWER(

{ [kres.type.A] = { rdata=kres.str2ip('192.0.2.7'), ttl=300 } }
), { todname('example.com') }))

-- policy to generate two TXT records (specified in binary format) for example.net
policy.add(

policy.domains(
policy.ANSWER(

{ [kres.type.TXT] = { rdata={'\005first', '\006second'}, ttl=5 } }
), { todname('example.net') }))

kres.parse_rdata({str, ...})
Parse string representation of RTYPE and RDATA into RDATA wire format. Expects a table of string(s)
and returns a table of wire data.

-- create wire format RDATA that can be passed to policy.ANSWER
kres.parse_rdata({'SVCB 1 resolver.example. alpn=dot'})
kres.parse_rdata({
'SVCB 1 resolver.example. alpn=dot ipv4hint=192.0.2.1 ipv6hint=2001:db8::1',
'SVCB 2 resolver.example. mandatory=key65380 alpn=h2 key65380=/dns-query{?

(continues on next page)

7.6. Policy, access control, data manipulation 47

https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-4

Knot Resolver, Release 6.0.0a1

(continued from previous page)

→˓dns}',
})

More complex non-chain actions are described in their own chapters, namely:

• Forwarding

• Response Policy Zones

Chain actions

Following actions act on request and then processing continue until first non-chain action (specified in the previous
section) is triggered:

policy.MIRROR(ip_address)
Send copy of incoming DNS queries to a given IP address using DNS-over-UDP and continue resolving them as
usual. This is useful for sanity testing new versions of DNS resolvers.

policy.add(policy.all(policy.MIRROR('127.0.0.2')))

policy.FLAGS(set, clear)
Set and/or clear some flags for the query. There can be multiple flags to set/clear. You can just pass a single flag
name (string) or a set of names. Flag names correspond to kr_qflags structure. Use only if you know what
you are doing.

Actions for extra logging

These are also “chain” actions, i.e. they don’t stop processing the policy rule list. Similarly to other actions, they apply
during whole processing of the client’s request, i.e. including any sub-queries.

The log lines from these policy actions are tagged by extra [reqdbg] prefix, and they are produced regardless of your
log_level() setting. They are marked as debug level, so e.g. with journalctl command you can use -p info to skip
them.

Warning: Beware of producing too much logs.

These actions are not suitable for use on a large fraction of resolver’s requests. The extra logs have significant
performance impact and might also overload your logging system (or get rate-limited by it). You can use Filters to
further limit on which requests this happens.

policy.DEBUG_ALWAYS

Print debug-level logging for this request. That also includes messages from client (REQTRACE), upstream servers
(QTRACE), and stats about interesting records at the end.

-- debug requests that ask for flaky.example.net or below
policy.add(policy.suffix(policy.DEBUG_ALWAYS,

policy.todnames({'flaky.example.net'})))

policy.DEBUG_CACHE_MISS

Same as DEBUG_ALWAYS but only if the request required information which was not available locally, i.e. requests
which forced resolver to ask upstream server(s). Intended usage is for debugging problems with remote servers.

48 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

policy.DEBUG_IF(test_function)

Parameters
test_function – Function with single argument of type kr_request which returns true if
debug logs for that request should be generated and false otherwise.

Same as DEBUG_ALWAYS but only logs if the test_function says so.

Note: test_function is evaluated only when request is finished. As a result all debug logs this request must
be collected, and at the end they get either printed or thrown away.

Example usage which gathers verbose logs for all requests in subtree dnssec-failed.org. and prints
debug logs for those finishing in a different state than kres.DONE (most importantly kres.FAIL, see
kr_layer_state).

policy.add(policy.suffix(
policy.DEBUG_IF(function(req)

return (req.state ~= kres.DONE)
end),

policy.todnames({'dnssec-failed.org.'})))

policy.QTRACE

Pretty-print DNS responses from upstream servers (or cache) into logs. It’s useful for debugging weird DNS
servers.

If you do not use QTRACE in combination with DEBUG*, you additionally need either log_groups({'iterat'})
(possibly with other groups) or log_level('debug') to see the output in logs.

policy.REQTRACE

Pretty-print DNS requests from clients into the verbose log. It’s useful for debugging weird DNS clients. It
makes most sense together with Views and ACLs (enabling per-client) and probably with verbose logging those
request (e.g. use DEBUG_ALWAYS instead).

policy.IPTRACE

Log how the request arrived. Most notably, this includes the client’s IP address, so beware of privacy implications.

-- example usage in configuration
policy.add(policy.all(policy.IPTRACE))
-- you might want to combine it with some other logs, e.g.
policy.add(policy.all(policy.DEBUG_ALWAYS))

-- example log lines from IPTRACE:
[reqdbg][policy][57517.00] request packet arrived from ::1#37931 to ::1#00853 (TCP␣
→˓+ TLS)
[reqdbg][policy][65538.00] request packet arrived internally

7.6. Policy, access control, data manipulation 49

Knot Resolver, Release 6.0.0a1

Custom actions

policy.custom_action(state, request)

Parameters
• state – Request processing state kr_layer_state.

• request – Current DNS request as kr_request structure.

Returns
Returning a new kr_layer_state prevents evaluating other policy rules. Returning nil creates
a chain action and allows to continue evaluating other rules.

This is real example of an action function:

-- Custom action which generates fake A record
local ffi = require('ffi')
local function fake_A_record(state, req)

local answer = req:ensure_answer()
if answer == nil then return nil end
local qry = req:current()
if qry.stype ~= kres.type.A then

return state
end
ffi.C.kr_pkt_make_auth_header(answer)
answer:rcode(kres.rcode.NOERROR)
answer:begin(kres.section.ANSWER)
answer:put(qry.sname, 900, answer:qclass(), kres.type.A, '\192\168\1\3')
return kres.DONE

end

This custom action can be used as any other built-in action. For example this applies our fake A record action and
executes it on all queries in subtree example.net:

policy.add(policy.suffix(fake_A_record, policy.todnames({'example.net'})))

The action function can implement arbitrary logic so it is possible to implement complex heuristics, e.g. to deflect
Slow drip DNS attacks or gray-list resolution of misbehaving zones.

Warning: The policy module currently only looks at whole DNS requests. The rules won’t be re-applied e.g.
when following CNAMEs.

Forwarding

Forwarding action alters behavior for cache-miss events. If an information is missing in the local cache the resolver will
forward the query to another DNS resolver for resolution (instead of contacting authoritative servers directly). DNS
answers from the remote resolver are then processed locally and sent back to the original client.

Actions policy.FORWARD(), policy.TLS_FORWARD() and policy.STUB() accept up to four IP addresses at once
and the resolver will automatically select IP address which statistically responds the fastest.

policy.FORWARD(ip_address)

50 Chapter 7. Advanced configuration (Lua)

https://secure64.com/water-torture-slow-drip-dns-ddos-attack

Knot Resolver, Release 6.0.0a1

policy.FORWARD({ ip_address, [ip_address, ...] })
Forward cache-miss queries to specified IP addresses (without encryption), DNSSEC validate received answers
and cache them. Target IP addresses are expected to be DNS resolvers.

-- Forward all queries to public resolvers https://www.nic.cz/odvr
policy.add(policy.all(

policy.FORWARD(
{'2001:148f:fffe::1', '2001:148f:ffff::1',
'185.43.135.1', '193.14.47.1'})))

A variant which uses encrypted DNS-over-TLS transport is called policy.TLS_FORWARD(), please see section
Forwarding over TLS protocol (DNS-over-TLS).

policy.STUB(ip_address)
policy.STUB({ ip_address, [ip_address, ...] })

Similar to policy.FORWARD() but without attempting DNSSEC validation. Each request may be either an-
swered from cache or simply sent to one of the IPs with proxying back the answer.

This mode does not support encryption and should be used only for Replacing part of the DNS tree. Use policy.
FORWARD() mode if possible.

-- Answers for reverse queries about the 192.168.1.0/24 subnet
-- are to be obtained from IP address 192.0.2.1 port 5353
-- This disables DNSSEC validation!
policy.add(policy.suffix(

policy.STUB('192.0.2.1@5353'),
{todname('1.168.192.in-addr.arpa')}))

Note: By default, forwarding targets must support EDNS and 0x20 randomization. See example in Replacing part of
the DNS tree.

Warning: Limiting forwarding actions by filters (e.g. policy.suffix()) may have unexpected consequences.
Notably, forwarders can inject any records into your cache even if you “restrict” them to an insignificant DNS
subtree – except in cases where DNSSEC validation applies, of course.

The behavior is probably best understood through the fact that filters and actions are completely decoupled. The
forwarding actions have no clue about why they were executed, e.g. that the user wanted to restrict the forwarder
only to some subtree. The action just selects some set of forwarders to process this whole request from the client,
and during that processing it might need some other “sub-queries” (e.g. for validation). Some of those might not’ve
passed the intended filter, but policy rule-set only applies once per client’s request.

Forwarding over TLS protocol (DNS-over-TLS)

policy.TLS_FORWARD({ {ip_address, authentication}, [...] })
Same as policy.FORWARD() but send query over DNS-over-TLS protocol (encrypted). Each target IP ad-
dress needs explicit configuration how to validate TLS certificate so each IP address is configured by pair:
{ip_address, authentication}. See sections below for more details.

Policy policy.TLS_FORWARD() allows you to forward queries using Transport Layer Security protocol, which hides
the content of your queries from an attacker observing the network traffic. Further details about this protocol can be
found in RFC 7858 and IETF draft dprive-dtls-and-tls-profiles.

7.6. Policy, access control, data manipulation 51

https://en.wikipedia.org/wiki/Extension_mechanisms_for_DNS
https://tools.ietf.org/html/draft-vixie-dnsext-dns0x20-00
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://datatracker.ietf.org/doc/html/rfc7858.html
https://tools.ietf.org/html/draft-ietf-dprive-dtls-and-tls-profiles

Knot Resolver, Release 6.0.0a1

Queries affected by policy.TLS_FORWARD() will always be resolved over TLS connection. Knot Resolver does not
implement fallback to non-TLS connection, so if TLS connection cannot be established or authenticated according to
the configuration, the resolution will fail.

To test this feature you need to either configure Knot Resolver as DNS-over-TLS server, or pick some public DNS-over-
TLS server. Please see DNS Privacy Project homepage for list of public servers.

Note: Some public DNS-over-TLS providers may apply rate-limiting which makes their service incompatible with
Knot Resolver’s TLS forwarding. Notably, Google Public DNS doesn’t work as of 2019-07-10.

When multiple servers are specified, the one with the lowest round-trip time is used.

CA+hostname authentication

Traditional PKI authentication requires server to present certificate with specified hostname, which is issued by one of
trusted CAs. Example policy is:

policy.TLS_FORWARD({
{'2001:DB8::d0c', hostname='res.example.com'}})

• hostname must be a valid domain name matching server’s certificate. It will also be sent to the server as SNI.

• ca_file optionally contains a path to a CA certificate (or certificate bundle) in PEM format. If you omit that,
the system CA certificate store will be used instead (usually sufficient). A list of paths is also accepted, but all
of them must be valid PEMs.

Key-pinned authentication

Instead of CAs, you can specify hashes of accepted certificates in pin_sha256. They are in the usual format – base64
from sha256. You may still specify hostname if you want SNI to be sent.

TLS Examples

modules = { 'policy' }
-- forward all queries over TLS to the specified server
policy.add(policy.all(policy.TLS_FORWARD({{'192.0.2.1', pin_sha256='YQ=='}})))
-- for brevity, other TLS examples omit policy.add(policy.all())
-- single server authenticated using its certificate pin_sha256
policy.TLS_FORWARD({{'192.0.2.1', pin_sha256='YQ=='}}) -- pin_sha256 is base64-encoded
-- single server authenticated using hostname and system-wide CA certificates
policy.TLS_FORWARD({{'192.0.2.1', hostname='res.example.com'}})
-- single server using non-standard port
policy.TLS_FORWARD({{'192.0.2.1@443', pin_sha256='YQ=='}}) -- use @ or # to specify port
-- single server with multiple valid pins (e.g. anycast)
policy.TLS_FORWARD({{'192.0.2.1', pin_sha256={'YQ==', 'Wg=='}})
-- multiple servers, each with own authenticator
policy.TLS_FORWARD({ -- please note that { here starts list of servers

{'192.0.2.1', pin_sha256='Wg=='},
-- server must present certificate issued by specified CA and hostname must match
{'2001:DB8::d0c', hostname='res.example.com', ca_file='/etc/knot-resolver/tlsca.crt'}

})

52 Chapter 7. Advanced configuration (Lua)

https://dnsprivacy.org/
https://developers.google.com/speed/public-dns/docs/dns-over-tls
https://en.wikipedia.org/wiki/Server_Name_Indication
https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail
https://en.wikipedia.org/wiki/Server_Name_Indication

Knot Resolver, Release 6.0.0a1

Forwarding to multiple targets

With the use of policy.slice() function, it is possible to split the entire DNS namespace into distinct slices. When
used in conjunction with policy.TLS_FORWARD(), it’s possible to forward different queries to different targets.

policy.slice(slice_func, action[, action[, ...])

Parameters
• slice_func – slicing function that returns index based on query

• action – action to be performed for the slice

This function splits the entire domain space into multiple slices (determined by the number of provided actions).
A slice_func is called to determine which slice a query belongs to. The corresponding action is then exe-
cuted.

policy.slice_randomize_psl(seed=os.time() / 3600 * 24 * 7)

Parameters
seed – seed for random assignment

The function initializes and returns a slicing function, which deterministically assigns query to a slice based on
the query name.

It utilizes the Public Suffix List to ensure domains under the same registrable domain end up in a single slice.
(see example below)

seed can be used to re-shuffle the slicing algorithm when the slicing function is initialized. By default, the
assignment is re-shuffled after one week (when resolver restart / reloads config). To force a stable distribution,
pass a fixed value. To re-shuffle on every resolver restart, use os.time().

The following example demonstrates a distribution among 3 slices:

slice 1/3:
example.com
a.example.com
b.example.com
x.b.example.com
example3.com

slice 2/3:
example2.co.uk

slice 3/3:
example.co.uk
a.example.co.uk

These two functions can be used together to forward queries for names in different parts of DNS name space to different
target servers:

policy.add(policy.slice(
policy.slice_randomize_psl(),
policy.TLS_FORWARD({{'192.0.2.1', hostname='res.example.com'}}),
policy.TLS_FORWARD({

-- multiple servers can be specified for a single slice
-- the one with lowest round-trip time will be used
{'193.17.47.1', hostname='odvr.nic.cz'},

(continues on next page)

7.6. Policy, access control, data manipulation 53

https://publicsuffix.org

Knot Resolver, Release 6.0.0a1

(continued from previous page)

{'185.43.135.1', hostname='odvr.nic.cz'},
})

))

Note: The privacy implications of using this feature aren’t clear. Since websites often make requests to multiple
domains, these might be forwarded to different targets. This could result in decreased privacy (e.g. when the remote
targets are both logging or otherwise processing your DNS traffic). The intended use-case is to use this feature with
semi-trusted resolvers which claim to do no logging (such as those listed on dnsprivacy.org), to decrease the potential
exposure of your DNS data to a malicious resolver operator.

Replacing part of the DNS tree

Following procedure applies only to domains which have different content publicly and internally. For example this
applies to “your own” top-level domain example. which does not exist in the public (global) DNS namespace.

Dealing with these internal-only domains requires extra configuration because DNS was designed as “single names-
pace” and local modifications like adding your own TLD break this assumption.

Warning: Use of internal names which are not delegated from the public DNS is causing technical problems with
caching and DNSSEC validation and generally makes DNS operation more costly. We recommend against using
these non-delegated names.

To make such internal domain available in your resolver it is necessary to graft your domain onto the public DNS
namespace, but grafting creates new issues:

These grafted domains will be rejected by DNSSEC validation because such domains are technically indistinguishable
from an spoofing attack against the public DNS. Therefore, if you trust the remote resolver which hosts the internal-only
domain, and you trust your link to it, you need to use the policy.STUB() policy instead of policy.FORWARD() to
disable DNSSEC validation for those grafted domains.

Listing 1: Example configuration grafting domains onto public DNS
namespace

extraTrees = policy.todnames(
{'faketldtest.',
'sld.example.',
'internal.example.com.',
'2.0.192.in-addr.arpa.' -- this applies to reverse DNS tree as well
})

-- Beware: the rule order is important, as policy.STUB is not a chain action.
-- Flags: for "dumb" targets disabling EDNS can help (below) as DNSSEC isn't
-- validated anyway; in some of those cases adding 'NO_0X20' can also help,
-- though it also lowers defenses against off-path attacks on communication
-- between the two servers.
-- With kresd <= 5.5.3 you also needed 'NO_CACHE' flag to avoid unintentional
-- NXDOMAINs that could sometimes happen due to aggressive DNSSEC caching.
policy.add(policy.suffix(policy.FLAGS({'NO_EDNS'}), extraTrees))
policy.add(policy.suffix(policy.STUB({'2001:db8::1'}), extraTrees))

54 Chapter 7. Advanced configuration (Lua)

https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+Test+Servers

Knot Resolver, Release 6.0.0a1

Response policy zones

Warning: There is no published Internet Standard for RPZ and implementations vary. At the moment
Knot Resolver supports limited subset of RPZ format and deviates from implementation in BIND.
Nevertheless it is good enough for blocking large lists of spam or advertising domains.

The RPZ file format is basically a DNS zone file with very special semantics. For example:

; left hand side ; TTL and class ; right hand side
; encodes RPZ trigger ; ignored ; encodes action
; (i.e. filter)
blocked.domain.example 600 IN CNAME . ; block main␣
→˓domain
*.blocked.domain.example 600 IN CNAME . ; block subdomains

The only “trigger” supported in Knot Resolver is query name, i.e. left hand side must be a domain name
which triggers the action specified on the right hand side.

Subset of possible RPZ actions is supported, namely:

RPZ Right Hand Side Knot Resolver Action BIND Compatibility
. action is used compatible if action is policy.DENY
*. policy.ANSWER() yes
rpz-passthru. policy.PASS yes
rpz-tcp-only. policy.TC yes
rpz-drop. policy.DROP no1

fake A/AAAA policy.ANSWER() yes
fake CNAME not supported no

Note: To debug which domains are affected by RPZ (or other policy actions), you can enable the policy
log group:

log_groups({'policy'})

See also non-ASCII support note.

policy.rpz(action, path[, watch = true])
Parameters

• action – the default action for match in the zone; typically you want policy.DENY

• path – path to zone file

• watch – boolean, if true, the file will be reloaded on file change

Enforce RPZ rules. This can be used in conjunction with published blocklist feeds. The RPZ operation is well
described in this Jan-Piet Mens’s post, or the Pro DNS and BIND book.

For example, we can store the example snippet with domain blocked.domain.example (above) into file /
etc/knot-resolver/blocklist.rpz and configure resolver to answer with NXDOMAIN plus the specified
additional text to queries for this domain:

1 Our policy.DROP returns SERVFAIL answer (for historical reasons).

7.6. Policy, access control, data manipulation 55

https://dnsrpz.info/
https://dnsrpz.info/
https://dnsrpz.info/
http://jpmens.net/2011/04/26/how-to-configure-your-bind-resolvers-to-lie-using-response-policy-zones-rpz/
http://www.zytrax.com/books/dns/ch7/rpz.html

Knot Resolver, Release 6.0.0a1

policy.add(
policy.rpz(policy.DENY_MSG('domain blocked by your resolver operator'),

'/etc/knot-resolver/blocklist.rpz',
true))

Resolver will reload RPZ file at run-time if the RPZ file changes. Recommended RPZ update procedure is to store
new blocklist in a new file (newblocklist.rpz) and then rename the new file to the original file name (blocklist.rpz).
This avoids problems where resolver might attempt to re-read an incomplete file.

Additional properties

Most properties (actions, filters) are described above.

policy.add(rule, postrule)

Parameters
• rule – added rule, i.e. policy.pattern(policy.DENY, '[0-9]+\2cz')

• postrule – boolean, if true the rule will be evaluated on answer instead of query

Returns
rule description

Add a new policy rule that is executed either or queries or answers, depending on the postrule parameter. You
can then use the returned rule description to get information and unique identifier for the rule, as well as match
count.

-- mirror all queries, keep handle so we can retrieve information later
local rule = policy.add(policy.all(policy.MIRROR('127.0.0.2')))
-- we can print statistics about this rule any time later
print(string.format('id: %d, matched queries: %d', rule.id, rule.count)

policy.del(id)

Parameters
id – identifier of a given rule returned by policy.add()

Returns
boolean true if rule was deleted, false otherwise

Remove a rule from policy list.

policy.todnames({name, ...})

Param
names table of domain names in textual format

Returns table of domain names in wire format converted from strings.

-- Convert single name
assert(todname('example.com') == '\7example\3com\0')
-- Convert table of names
policy.todnames({'example.com', 'me.cz'})
{ '\7example\3com\0', '\2me\2cz\0' }

56 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

7.6.2 Views and ACLs

The policy module implements policies for global query matching, e.g. solves “how to react to certain query”. This
module combines it with query source matching, e.g. “who asked the query”. This allows you to create personalized
blacklists, filters and ACLs.

There are two identification mechanisms:

• addr - identifies the client based on his subnet

• tsig - identifies the client based on a TSIG key name (only for testing purposes, TSIG signature is not verified!)

View module allows you to combine query source information with policy rules.

view:addr('10.0.0.1', policy.suffix(policy.TC, policy.todnames({'example.com'})))

This example will force given client to TCP for names in example.com subtree. You can combine view selectors with
RPZ to create personalized filters for example.

Warning: Beware that cache is shared by all requests. For example, it is safe to refuse answer based on who asks
the resolver, but trying to serve different data to different clients will result in unexpected behavior. Setups like
split-horizon which depend on isolated DNS caches are explicitly not supported.

Example configuration

-- Load modules
modules = { 'view' }
-- Whitelist queries identified by TSIG key
view:tsig('\5mykey', policy.all(policy.PASS))
-- Block local IPv4 clients (ACL like)
view:addr('127.0.0.1', policy.all(policy.DENY))
-- Block local IPv6 clients (ACL like)
view:addr('::1', policy.all(policy.DENY))
-- Drop queries with suffix match for remote client
view:addr('10.0.0.0/8', policy.suffix(policy.DROP, policy.todnames({'xxx'})))
-- RPZ for subset of clients
view:addr('192.168.1.0/24', policy.rpz(policy.PASS, 'whitelist.rpz'))
-- Do not try this - it will pollute cache and surprise you!
-- view:addr('10.0.0.0/8', policy.all(policy.FORWARD('2001:DB8::1')))
-- Drop all IPv4 that hasn't matched
view:addr('0.0.0.0/0', policy.all(policy.DROP))

Rule order

The current implementation is best understood as three separate rule chains: vanilla policy.add, view:tsig and
view:addr. For each request the rules in these chains get tried one by one until a non-chain policy action gets executed.

By default policy module acts before view module due to policy being loaded by default. If you want to intermingle
universal rules with view:addr, you may simply wrap the universal policy rules in view closure like this:

view:addr('0.0.0.0/0', policy.<rule>) -- and
view:addr('::0/0', policy.<rule>)

7.6. Policy, access control, data manipulation 57

https://dnsrpz.info/

Knot Resolver, Release 6.0.0a1

Properties

view:addr(subnet, rule)

Parameters
• subnet – client subnet, e.g. 10.0.0.1

• rule – added rule, e.g. policy.pattern(policy.DENY, '[0-9]+\2cz')

Apply rule to clients in given subnet.

view:tsig(key, rule)

Parameters
• key – client TSIG key domain name, e.g. \5mykey

• rule – added rule, e.g. policy.pattern(policy.DENY, '[0-9]+\2cz')

Apply rule to clients with given TSIG key.

Warning: This just selects rule based on the key name, it doesn’t verify the key or signature yet.

7.6.3 Static hints

This is a module providing static hints for forward records (A/AAAA) and reverse records (PTR). The records can be
loaded from /etc/hosts-like files and/or added directly.

You can also use the module to change the root hints; they are used as a safety belt or if the root NS drops out of cache.

Tip: For blocking large lists of domains please use policy.rpz() instead of creating huge list of domains with IP
address 0.0.0.0.

Examples

-- Load hints after iterator (so hints take precedence before caches)
modules = { 'hints > iterate' }
-- Add a custom hosts file
hints.add_hosts('hosts.custom')
-- Override the root hints
hints.root({
['j.root-servers.net.'] = { '2001:503:c27::2:30', '192.58.128.30' }

})
-- Add a custom hint
hints['foo.bar'] = '127.0.0.1'

Note: The policy module applies before hints, so your hints might get surprisingly shadowed by even default policies.

That most often happens for RFC 6761#section-6 names, e.g. localhost and test or with PTR records in private
address ranges. To unblock the required names, you may use an explicit policy.PASS action.

58 Chapter 7. Advanced configuration (Lua)

https://datatracker.ietf.org/doc/html/rfc6761.html#section-6

Knot Resolver, Release 6.0.0a1

policy.add(policy.suffix(policy.PASS, {todname('1.168.192.in-addr.arpa')}))

This .PASS workaround isn’t ideal. To improve some cases, we recommend to move these .PASS lines to the end of
your rule list. The point is that applying any non-chain action (e.g. forwarding actions or .PASS itself) stops processing
any later policy rules for that request (including the default block-rules). You probably don’t want this .PASS to shadow
any other rules you might have; and on the other hand, if any other non-chain rule triggers, additional .PASS would not
change anything even if it were somehow force-executed.

Properties

hints.config([path])
Parameters
path (string) – path to hosts-like file, default: no file

Returns
{ result: bool }

Clear any configured hints, and optionally load a hosts-like file as in hints.add_hosts(path). (Root hints are
not touched.)

hints.add_hosts([path])
Parameters
path (string) – path to hosts-like file, default: /etc/hosts

Add hints from a host-like file.

hints.get(hostname)

Parameters
hostname (string) – i.e. "localhost"

Returns
{ result: [address1, address2, ...] }

Return list of address record matching given name. If no hostname is specified, all hints are returned in the table
format used by hints.root().

hints.set(pair)

Parameters
pair (string) – hostname address i.e. "localhost 127.0.0.1"

Returns
{ result: bool }

Add a hostname–address pair hint.

Note: If multiple addresses have been added for a name (in separate hints.set() commands), all are returned
in a forward query. If multiple names have been added to an address, the last one defined is returned in a
corresponding PTR query.

hints.del(pair)

Parameters
pair (string) – hostname address i.e. "localhost 127.0.0.1", or just hostname

7.6. Policy, access control, data manipulation 59

Knot Resolver, Release 6.0.0a1

Returns
{ result: bool }

Remove a hostname - address pair hint. If address is omitted, all addresses for the given name are deleted.

hints.root_file(path)
Replace current root hints from a zonefile. If the path is omitted, the compiled-in path is used, i.e. the root hints
are reset to the default.

hints.root(root_hints)

Parameters
root_hints (table) – new set of root hints i.e. {['name'] = 'addr', ...}

Returns
{ ['a.root-servers.net.'] = { '1.2.3.4', '5.6.7.8', ...}, ... }

Replace current root hints and return the current table of root hints.

Tip: If no parameters are passed, it only returns current root hints set without changing anything.

Example:

> hints.root({
['l.root-servers.net.'] = '199.7.83.42',
['m.root-servers.net.'] = '202.12.27.33'

})
[l.root-servers.net.] => {
[1] => 199.7.83.42

}
[m.root-servers.net.] => {
[1] => 202.12.27.33

}

Tip: A good rule of thumb is to select only a few fastest root hints. The server learns RTT and NS quality over
time, and thus tries all servers available. You can help it by preselecting the candidates.

hints.use_nodata(toggle)

Parameters
toggle (bool) – true if enabling NODATA synthesis, false if disabling

Returns
{ result: bool }

If set to true (the default), NODATA will be synthesised for matching hint name, but mismatching type (e.g.
AAAA query when only A hint exists).

hints.ttl([new_ttl])
Parameters
new_ttl (int) – new TTL to set (optional)

Returns
the TTL setting

This function allows to read and write the TTL value used for records generated by the hints module.

60 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

7.6.4 DNS64

The module for RFC 6147 DNS64 AAAA-from-A record synthesis, it is used to enable client-server communication
between an IPv6-only client and an IPv4-only server. See the well written introduction in the PowerDNS documenta-
tion. If no address is passed (i.e. nil), the well-known prefix 64:ff9b:: is used.

Simple example

-- Load the module with default settings
modules = { 'dns64' }
-- Reconfigure later
dns64.config({ prefix = '2001:db8::aabb:0:0' })

Warning: The module currently won’t work well with policy.STUB(). Also, the IPv6 prefix passed in con-
figuration is assumed to be /96.

Tip: The A record sub-requests will be DNSSEC secured, but the synthetic AAAA records can’t be. Make sure the
last mile between stub and resolver is secure to avoid spoofing.

Advanced options

TTL in CNAME generated in the reverse ip6.arpa. subtree is configurable:

dns64.config({ prefix = '2001:db8:77ff::', rev_ttl = 300 })

You can specify a set of IPv6 subnets that are disallowed in answer. If they appear, they will be replaced by AAAAs
generated from As.

dns64.config({
prefix = '2001:db8:3::',
exclude_subnets = { '2001:db8:888::/48', '::ffff/96' },

})
-- You could even pass '::/0' to always force using generated AAAAs.

In case you don’t want dns64 for all clients, you can set DNS64_DISABLE flag via the view module.

modules = { 'dns64', 'view' }
-- disable dns64 for all IPv4 source addresses
view:addr('0.0.0.0/0', policy.all(policy.FLAGS('DNS64_DISABLE')))
-- disable dns64 for all IPv6 source addresses
view:addr('::/0', policy.all(policy.FLAGS('DNS64_DISABLE')))
-- re-enable dns64 for two IPv6 subnets
view:addr('2001:db8:11::/48', policy.all(policy.FLAGS(nil, 'DNS64_DISABLE')))
view:addr('2001:db8:93::/48', policy.all(policy.FLAGS(nil, 'DNS64_DISABLE')))

7.6. Policy, access control, data manipulation 61

https://datatracker.ietf.org/doc/html/rfc6147.html
https://doc.powerdns.com/md/recursor/dns64

Knot Resolver, Release 6.0.0a1

7.6.5 IP address renumbering

The module renumbers addresses in answers to different address space. e.g. you can redirect malicious addresses to a
blackhole, or use private address ranges in local zones, that will be remapped to real addresses by the resolver.

Warning: While requests are still validated using DNSSEC, the signatures are stripped from final answer. The
reason is that the address synthesis breaks signatures. You can see whether an answer was valid or not based on the
AD flag.

Example configuration

modules = {
renumber = {

-- Source subnet, destination subnet
{'10.10.10.0/24', '192.168.1.0'},
-- Remap /16 block to localhost address range
{'166.66.0.0/16', '127.0.0.0'},
-- Remap /26 subnet (64 ip addresses)
{'166.55.77.128/26', '127.0.0.192'},
-- Remap a /32 block to a single address
{'2001:db8::/32', '::1!'},

}
}

7.6.6 Answer reordering

Certain clients are “dumb” and always connect to first IP address or name found in a DNS answer received from resolver
instead of picking randomly. As a workaround for such broken clients it is possible to randomize order of records in
DNS answers sent by resolver:

reorder_RR([true | false])
Parameters
new_value (boolean) – true to enable or false to disable randomization (optional)

Returns
The (new) value of the option

If set, resolver will vary the order of resource records within RR sets. It is enabled by default since 5.3.0.

7.6.7 Rebinding protection

This module provides protection from DNS Rebinding attack by blocking answers which contain IPv4 or IPv6 addresses
for private use (or some other special-use addresses).

To enable this module insert following line into your configuration file:

modules.load('rebinding < iterate')

Please note that this module does not offer stable configuration interface yet. For this reason it is suitable mainly for
public resolver operators who do not need to whitelist certain subnets.

62 Chapter 7. Advanced configuration (Lua)

https://en.wikipedia.org/wiki/DNS_rebinding
https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml

Knot Resolver, Release 6.0.0a1

Warning: DNS Blacklists (RFC 5782) often use 127.0.0.0/8 to blacklist a domain. Using the rebinding module
prevents DNSBL from functioning properly.

7.6.8 Refuse queries without RD bit

This module ensures all queries without RD (recursion desired) bit set in query are answered with REFUSED. This
prevents snooping on the resolver’s cache content.

The module is loaded by default. If you’d like to disable this behavior, you can unload it:

modules.unload('refuse_nord')

7.6.9 DNS Application Firewall

This module is a high-level interface for other powerful filtering modules and DNS views. It provides an easy interface
to apply and monitor DNS filtering rules and a persistent memory for them. It also provides a restful service interface
and an HTTP interface.

Example configuration

Firewall rules are declarative and consist of filters and actions. Filters have field operator operand notation (e.g.
qname = example.com), and may be chained using AND/OR keywords. Actions may or may not have parameters
after the action name.

-- Let's write some daft rules!
modules = { 'daf' }

-- Block all queries with QNAME = example.com
daf.add('qname = example.com deny')

-- Filters can be combined using AND/OR...
-- Block all queries with QNAME match regex and coming from given subnet
daf.add('qname ~ %w+.example.com AND src = 192.0.2.0/24 deny')

-- We also can reroute addresses in response to alternate target
-- This reroutes 192.0.2.1 to localhost
daf.add('src = 127.0.0.0/8 reroute 192.0.2.1-127.0.0.1')

-- Subnets work too, this reroutes a whole subnet
-- e.g. 192.0.2.55 to 127.0.0.55
daf.add('src = 127.0.0.0/8 reroute 192.0.2.0/24-127.0.0.0')

-- This rewrites all A answers for 'example.com' from
-- whatever the original address was to 127.0.0.2
daf.add('src = 127.0.0.0/8 rewrite example.com A 127.0.0.2')

-- Mirror queries matching given name to DNS logger
daf.add('qname ~ %w+.example.com mirror 127.0.0.2')
daf.add('qname ~ example-%d.com mirror 127.0.0.3@5353')

(continues on next page)

7.6. Policy, access control, data manipulation 63

https://tools.ietf.org/html/rfc5782#section-2.1

Knot Resolver, Release 6.0.0a1

(continued from previous page)

-- Forward queries from subnet
daf.add('src = 127.0.0.1/8 forward 127.0.0.1@5353')
-- Forward to multiple targets
daf.add('src = 127.0.0.1/8 forward 127.0.0.1@5353,127.0.0.2@5353')

-- Truncate queries based on destination IPs
daf.add('dst = 192.0.2.51 truncate')

-- Disable a rule
daf.disable(2)
-- Enable a rule
daf.enable(2)
-- Delete a rule
daf.del(2)

-- Delete all rules and start from scratch
daf.clear()

Warning: Only the first matching rule’s action is executed. Defining additional actions for the same matching
rule, e.g. src = 127.0.0.1/8, will have no effect.

If you’re not sure what firewall rules are in effect, see daf.rules:

-- Show active rules
> daf.rules
[1] => {

[rule] => {
[count] => 42
[id] => 1
[cb] => function: 0x1a3eda38

}
[info] => qname = example.com AND src = 127.0.0.1/8 deny
[policy] => function: 0x1a3eda38

}
[2] => {

[rule] => {
[suspended] => true
[count] => 123522
[id] => 2
[cb] => function: 0x1a3ede88

}
[info] => qname ~ %w+.facebook.com AND src = 127.0.0.1/8 deny...
[policy] => function: 0x1a3ede88

}

64 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

Web interface

If you have HTTP/2 loaded, the firewall automatically loads as a snippet. You can create, track, suspend and remove
firewall rules from the web interface. If you load both modules, you have to load daf after http.

RESTful interface

The module also exports a RESTful API for operations over rule chains.

URL HTTP
Verb

Action

/daf GET Return JSON list of active rules.
/daf POST Insert new rule, rule string is expected in body. Returns rule information in

JSON.
/daf/<id> GET Retrieve a rule matching given ID.
/daf/<id> DELETE Delete a rule matching given ID.
/daf/<id>/<prop>/<val> PATCH Modify given rule, for example /daf/3/active/false suspends rule 3.

This interface is used by the web interface for all operations, but you can also use it directly for testing.

Get current rule set
$ curl -s -X GET http://localhost:8453/daf | jq .
{}

Create new rule
$ curl -s -X POST -d "src = 127.0.0.1 pass" http://localhost:8453/daf | jq .
{
"count": 0,
"active": true,
"info": "src = 127.0.0.1 pass",
"id": 1

}

Disable rule
$ curl -s -X PATCH http://localhost:8453/daf/1/active/false | jq .
true

Retrieve a rule information
$ curl -s -X GET http://localhost:8453/daf/1 | jq .
{
"count": 4,
"active": true,
"info": "src = 127.0.0.1 pass",
"id": 1

}

Delete a rule
$ curl -s -X DELETE http://localhost:8453/daf/1 | jq .
true

7.6. Policy, access control, data manipulation 65

Knot Resolver, Release 6.0.0a1

7.7 Logging, monitoring, diagnostics

To read service logs use commands usual for your distribution. E.g. on distributions using systemd-journald use
command journalctl -u kresd@* -f.

Knot Resolver supports 6 logging levels - crit, err, warning, notice, info, debug. All levels with the same
meaning as is defined in syslog.h. It is possible change logging level using log_level() function.

log_level('debug') -- too verbose for normal usage

Logging level notice is set after start by default, so logs from Knot Resolver should contain only couple lines a day. For
debugging purposes it is possible to use the very verbose debug level, but that is generally not usable unless restricted
in some way (see below).

In addition to levels, logging is also divided into the groups. All groups are logged by default, but you can enable debug
level for selected groups using log_groups() function. Other groups are logged to the log level set by log_level().

It is also possible to enable debug logging level for particular requests, with policies or as an HTTP service.

Less verbose logging for DNSSEC validation errors can be enabled by using DNSSEC validation failure logging mod-
ule.

log_level([level])
Param

string 'crit', 'err', 'warning', 'notice', 'info' or 'debug'

Returns
string Current logging level.

Pass a string to set the global logging level.

verbose([true | false])
Deprecated since version 5.4.0: Use log_level() instead.

Param
true enable debug level, false switch to default level (notice).

Returns
boolean true when debug level is enabled.

Toggle between debug and notice log level. Use only for debugging purposes. On busy systems verbose
logging can produce several MB of logs per second and will slow down operation.

log_target(target)

Param
string 'syslog', 'stderr', 'stdout'

Returns
string Current logging target.

Knot Resolver logs to standard error stream by default, but typical systemd units change that to
'syslog'. That setting logs directly through systemd’s facilities (if available) to preserve more
meta-data.

log_groups([table])
Param

table of string(s) representing log groups

66 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

Returns
table of string with currently set log groups

Use to turn-on debug logging for the selected groups regardless of the global log level. Calling with no argument
lists the currently active log groups. To remove all log groups, call the function with an empty table.

log_groups({'io', 'tls'} -- turn on debug logging for io and tls groups
log_groups() -- list active log groups
log_groups({}) -- remove all log groups

Various statistics for monitoring purposes are available in Statistics collector module, including export to central sys-
tems like Graphite, Metronome, InfluxDB, or Prometheus format.

Resolver Watchdog is tool to detect and recover from potential bugs that cause the resolver to stop responding properly
to queries.

Additional monitoring and debugging methods are described below. If none of these options fits your deployment or
if you have special needs you can configure your own checks and exports using Asynchronous events.

7.7.1 DNSSEC validation failure logging

This module logs a message for each DNSSEC validation failure (on notice level). It is meant to provide hint to
operators which queries should be investigated using diagnostic tools like DNSViz.

Add following line to your configuration file to enable it:

modules.load('bogus_log')

Example of error message logged by this module:

[dnssec] validation failure: dnssec-failed.org. DNSKEY

List of most frequent queries which fail as DNSSEC bogus can be obtained at run-time:

> bogus_log.frequent()
{

{
['count'] = 1,
['name'] = 'dnssec-failed.org.',
['type'] = 'DNSKEY',

},
{

['count'] = 13,
['name'] = 'rhybar.cz.',
['type'] = 'DNSKEY',

},
}

Please note that in future this module might be replaced with some other way to log this information.

7.7. Logging, monitoring, diagnostics 67

http://dnsviz.net/

Knot Resolver, Release 6.0.0a1

7.7.2 Statistics collector

Module stats gathers various counters from the query resolution and server internals, and offers them as a key-
value storage. These metrics can be either exported to Graphite/InfluxDB/Metronome, exposed as Prometheus metrics
endpoint, or processed using user-provided script as described in chapter Asynchronous events.

Note: Please remember that each Knot Resolver instance keeps its own statistics, and instances can be started and
stopped dynamically. This might affect your data postprocessing procedures if you are using Multiple instances.

Built-in statistics

Built-in counters keep track of number of queries and answers matching specific criteria.

Global request counters
request.total total number of DNS requests (including internal client requests)
request.internal internal requests generated by Knot Resolver (e.g. DNSSEC trust anchor updates)
request.udp external requests received over plain UDP (RFC 1035)
request.tcp external requests received over plain TCP (RFC 1035)
request.dot external requests received over DNS-over-TLS (RFC 7858)
request.doh external requests received over DNS-over-HTTP (RFC 8484)
request.xdp external requests received over plain UDP via an AF_XDP socket

Global answer counters
answer.total total number of answered queries
answer.cached queries answered from cache

Answers categorized by RCODE
answer.noerror NOERROR answers
answer.nodata NOERROR, but empty answers
answer.nxdomain NXDOMAIN answers
answer.servfail SERVFAIL answers

Answer latency
answer.1ms completed in 1ms
answer.10ms completed in 10ms
answer.50ms completed in 50ms
answer.100ms completed in 100ms
answer.250ms completed in 250ms
answer.500ms completed in 500ms
answer.1000ms completed in 1000ms
answer.1500ms completed in 1500ms
answer.slow completed in more than 1500ms
answer.sum_ms sum of all latencies in ms

68 Chapter 7. Advanced configuration (Lua)

https://datatracker.ietf.org/doc/html/rfc1035.html
https://datatracker.ietf.org/doc/html/rfc1035.html
https://datatracker.ietf.org/doc/html/rfc7858.html
https://datatracker.ietf.org/doc/html/rfc8484.html

Knot Resolver, Release 6.0.0a1

Answer flags
answer.aa authoritative answer
answer.tc truncated answer
answer.ra recursion available
answer.rd recursion desired (in answer!)
answer.ad authentic data (DNSSEC)
answer.cd checking disabled (DNSSEC)
answer.do DNSSEC answer OK
answer.edns0 EDNS0 present

Query flags
query.edns queries with EDNS present
query.dnssec queries with DNSSEC DO=1

Example:

modules.load('stats')

-- Enumerate metrics
> stats.list()
[answer.cached] => 486178
[iterator.tcp] => 490
[answer.noerror] => 507367
[answer.total] => 618631
[iterator.udp] => 102408
[query.concurrent] => 149

-- Query metrics by prefix
> stats.list('iter')
[iterator.udp] => 105104
[iterator.tcp] => 490

-- Fetch most common queries
> stats.frequent()
[1] => {

[type] => 2
[count] => 4
[name] => cz.

}

-- Fetch most common queries (sorted by frequency)
> table.sort(stats.frequent(), function (a, b) return a.count > b.count end)

-- Show recently contacted authoritative servers
> stats.upstreams()
[2a01:618:404::1] => {

[1] => 26 -- RTT
}
[128.241.220.33] => {

[1] => 31 - RTT
}

(continues on next page)

7.7. Logging, monitoring, diagnostics 69

Knot Resolver, Release 6.0.0a1

(continued from previous page)

-- Set custom metrics from modules
> stats['filter.match'] = 5
> stats['filter.match']
5

Module reference

stats.get(key)

Parameters
key (string) – i.e. "answer.total"

Returns
number

Return nominal value of given metric.

stats.set('key val')

Set nominal value of given metric.

Example:

stats.set('answer.total 5')
-- or syntactic sugar
stats['answer.total'] = 5

stats.list([prefix])
Parameters
prefix (string) – optional metric prefix, i.e. "answer" shows only metrics beginning with
“answer”

Outputs collected metrics as a JSON dictionary.

stats.upstreams()

Outputs a list of recent upstreams and their RTT. It is sorted by time and stored in a ring buffer of a fixed size. This means
it’s not aggregated and readable by multiple consumers, but also that you may lose entries if you don’t read quickly
enough. The default ring size is 512 entries, and may be overridden on compile time by -DUPSTREAMS_COUNT=X.

stats.frequent()

Outputs list of most frequent iterative queries as a JSON array. The queries are sampled probabilistically, and include
subrequests. The list maximum size is 5000 entries, make diffs if you want to track it over time.

stats.clear_frequent()

Clear the list of most frequent iterative queries.

70 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

Graphite/InfluxDB/Metronome

The graphite sends statistics over the Graphite protocol to either Graphite, Metronome, InfluxDB or any compatible
storage. This allows powerful visualization over metrics collected by Knot Resolver.

Tip: The Graphite server is challenging to get up and running, InfluxDB combined with Grafana are much easier, and
provide richer set of options and available front-ends. Metronome by PowerDNS alternatively provides a mini-graphite
server for much simpler setups.

Example configuration:

Only the host parameter is mandatory.

By default the module uses UDP so it doesn’t guarantee the delivery, set tcp = true to enable Graphite over TCP. If
the TCP consumer goes down or the connection with Graphite is lost, resolver will periodically attempt to reconnect
with it.

modules = {
graphite = {

prefix = hostname() .. worker.id, -- optional metric prefix
host = '127.0.0.1', -- graphite server address
port = 2003, -- graphite server port
interval = 5 * sec, -- publish interval
tcp = false -- set to true if you want TCP mode

}
}

The module supports sending data to multiple servers at once.

modules = {
graphite = {

host = { '127.0.0.1', '1.2.3.4', '::1' },
}

}

Dependencies

• lua cqueues package.

Prometheus metrics endpoint

The HTTP module exposes /metrics endpoint that serves metrics from Statistics collector in Prometheus text format.
You can use it as soon as HTTP module is configured:

$ curl -k https://localhost:8453/metrics | tail
TYPE latency histogram
latency_bucket{le=10} 2.000000
latency_bucket{le=50} 2.000000
latency_bucket{le=100} 2.000000
latency_bucket{le=250} 2.000000
latency_bucket{le=500} 2.000000

(continues on next page)

7.7. Logging, monitoring, diagnostics 71

https://graphite.readthedocs.io/en/latest/feeding-carbon.html
https://graphite.readthedocs.io/en/latest/feeding-carbon.html
https://github.com/ahuPowerDNS/metronome
https://influxdb.com/
https://influxdb.com/
http://grafana.org/
https://github.com/ahuPowerDNS/metronome
https://25thandclement.com/~william/projects/cqueues.html
https://prometheus.io

Knot Resolver, Release 6.0.0a1

(continued from previous page)

latency_bucket{le=1000} 2.000000
latency_bucket{le=1500} 2.000000
latency_bucket{le=+Inf} 2.000000
latency_count 2.000000
latency_sum 11.000000

You can namespace the metrics in configuration, using http.prometheus.namespace attribute:

modules.load('http')
-- Set Prometheus namespace
http.prometheus.namespace = 'resolver_'

You can also add custom metrics or rewrite existing metrics before they are returned to Prometheus client.

modules.load('http')
-- Add an arbitrary metric to Prometheus
http.prometheus.finalize = function (metrics)

table.insert(metrics, 'build_info{version="1.2.3"} 1')
end

7.7.3 Scripting worker

Worker is a service over event loop that tracks and schedules outstanding queries, you can see the statistics or schedule
new queries. It also contains information about specified worker count and process rank.

worker.id

Value from environment variable SYSTEMD_INSTANCE, or if it is not set, PID (string).

worker.pid

Current worker process PID (number).

worker.stats()

Return table of statistics. See member descriptions in worker_stats. A few fields are added, mainly from
POSIX getrusage():

• usertime and systime – CPU time used, in seconds

• pagefaults – the number of hard page faults, i.e. those that required I/O activity

• swaps – the number of times the process was “swapped” out of main memory; unused on Linux

• csw – the number of context switches, both voluntary and involuntary

• rss – current memory usage in bytes, including whole cache (resident set size)

Example:

print(worker.stats().concurrent)

72 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

7.7.4 Name Server Identifier (NSID)

Module nsid provides server-side support for RFC 5001 which allows DNS clients to request resolver to send back
its NSID along with the reply to a DNS request. This is useful for debugging larger resolver farms (e.g. when using
Multiple instances, anycast or load balancers).

NSID value can be configured in the resolver’s configuration file:

modules.load('nsid')
nsid.name('instance 1')

Tip: When dealing with Knot Resolver running in multiple instances managed with systemd see Instance-specific
configuration.

You can also obtain configured NSID value:

> nsid.name()
'instance 1'

The module can be disabled at run-time:

modules.unload('nsid')

7.7.5 Debugging a single request

Using query policies

Query policies policy.DEBUG_ALWAYS, policy.DEBUG_CACHE_MISS or policy.DEBUG_IF can be used to enable
debug-level logging for selected subdomains or queries matching specific conditions. Please refer to Actions for extra
logging for more information.

Using HTTP module

The http module provides /trace endpoint which allows to trace various aspects of the request execution. The basic
mode allows you to resolve a query and trace debug-level logs for it (and messages received):

$ curl https://localhost:8453/trace/e.root-servers.net
[8138] [iter] 'e.root-servers.net.' type 'A' created outbound query, parent id 0
[8138] [rc] => rank: 020, lowest 020, e.root-servers.net. A
[8138] [rc] => satisfied from cache
[8138] [iter] <= answer received:
;; ->>HEADER<<- opcode: QUERY; status: NOERROR; id: 8138
;; Flags: qr aa QUERY: 1; ANSWER: 0; AUTHORITY: 0; ADDITIONAL: 0

;; QUESTION SECTION
e.root-servers.net. A

;; ANSWER SECTION
e.root-servers.net. 3556353 A 192.203.230.10

(continues on next page)

7.7. Logging, monitoring, diagnostics 73

https://datatracker.ietf.org/doc/html/rfc5001.html

Knot Resolver, Release 6.0.0a1

(continued from previous page)

[8138] [iter] <= rcode: NOERROR
[8138] [resl] finished: 4, queries: 1, mempool: 81952 B

See chapter about Other HTTP services for further instructions how to load webmgmt endpoint into HTTP module, it
is a prerequisite for using /trace.

7.7.6 Watchdog

This module cooperates with Systemd watchdog to restart the process in case the internal event loop gets stuck. The
upstream Systemd unit files are configured to use this feature, which is turned on with the WatchdogSec= directive in
the service file.

As an optional feature, this module can also do an internal DNS query to check if resolver answers correctly. To use
this feature you must configure DNS name and type to query for:

watchdog.config({ qname = 'nic.cz.', qtype = kres.type.A })

Each single query from watchdog must result in answer with RCODE = NOERROR or NXDOMAIN. Any other result
will terminate the resolver (with SIGABRT) to allow the supervisor process to do cleanup, gather coredump and restart
the resolver.

It is recommended to use a name with a very short TTL to make sure the watchdog is testing all parts of resolver and
not only its cache. Obviously this check makes sense only when used with very reliable domains; otherwise a failure
on authoritative side will shutdown resolver!

WatchdogSec specifies deadline for supervisor when the process will be killed. Watchdog queries are executed each
WatchdogSec / 2 seconds. This implies that half of WatchdogSec interval must be long enough for normal DNS query
to succeed, so do not forget to add two or three seconds for random network timeouts etc.

The module is loaded by default. If you’d like to disable it you can unload it:

modules.unload('watchdog')

Beware that unloading the module without disabling watchdog feature in supervisor will lead to infinite restart loop.

7.7.7 Dnstap (traffic collection)

The dnstapmodule supports logging DNS requests and responses to a unix socket in dnstap format using fstrm framing
library. This logging is useful if you need effectively log all DNS traffic.

The unix socket and the socket reader must be present before starting resolver instances. Also it needs appropriate
filesystem permissions; the typical user and group of the daemon are called knot-resolver.

Tunables:

• socket_path: the unix socket file where dnstap messages will be sent

• identity: identity string as typically returned by an “NSID” (RFC 5001) query, empty by default

• version: version string of the resolver, defaulting to “Knot Resolver major.minor.patch”

• client.log_queries: if true queries from downstream in wire format will be logged

• client.log_responses: if true responses to downstream in wire format will be logged

74 Chapter 7. Advanced configuration (Lua)

https://dnstap.info

Knot Resolver, Release 6.0.0a1

modules = {
dnstap = {

socket_path = "/tmp/dnstap.sock",
identity = nsid.name() or "",
version = "My Custom Knot Resolver " .. package_version(),
client = {

log_queries = true,
log_responses = true,

},
}

}

7.7.8 Sentinel for Detecting Trusted Root Keys

The module ta_sentinel implements A Root Key Trust Anchor Sentinel for DNSSEC according to standard RFC
8509.

This feature allows users of DNSSEC validating resolver to detect which root keys are configured in resolver’s chain
of trust. The data from such signaling are necessary to monitor the progress of the DNSSEC root key rollover and to
detect potential breakage before it affect users. One example of research enabled by this module is available here.

This module is enabled by default and we urge users not to disable it. If it is absolutely necessary you may add
modules.unload('ta_sentinel') to your configuration to disable it.

7.7.9 Signaling Trust Anchor Knowledge in DNSSEC

The module for Signaling Trust Anchor Knowledge in DNSSEC Using Key Tag Query, implemented according to RFC
8145#section-5.

This feature allows validating resolvers to signal to authoritative servers which keys are referenced in their chain of trust.
The data from such signaling allow zone administrators to monitor the progress of rollovers in a DNSSEC-signed zone.

This mechanism serve to measure the acceptance and use of new DNSSEC trust anchors and key signing keys (KSKs).
This signaling data can be used by zone administrators as a gauge to measure the successful deployment of new keys.
This is of particular interest for the DNS root zone in the event of key and/or algorithm rollovers that rely on RFC 5011
to automatically update a validating DNS resolver’s trust anchor.

Attention: Experience from root zone KSK rollover in 2018 shows that this mechanism by itself is not sufficient to
reliably measure acceptance of the new key. Nevertheless, some DNS researchers found it is useful in combination
with other data so we left it enabled for now. This default might change once more information is available.

This module is enabled by default. You may use modules.unload('ta_signal_query') in your configuration.

7.7. Logging, monitoring, diagnostics 75

https://datatracker.ietf.org/doc/html/rfc8509.html
https://datatracker.ietf.org/doc/html/rfc8509.html
https://www.potaroo.net/ispcol/2018-11/kskpm.html
https://datatracker.ietf.org/doc/html/rfc8145.html#section-5
https://datatracker.ietf.org/doc/html/rfc8145.html#section-5
https://datatracker.ietf.org/doc/html/rfc5011.html

Knot Resolver, Release 6.0.0a1

7.7.10 System time skew detector

This module compares local system time with inception and expiration time bounds in DNSSEC signatures for . NS
records. If the local system time is outside of these bounds, it is likely a misconfiguration which will cause all DNSSEC
validation (and resolution) to fail.

In case of mismatch, a warning message will be logged to help with further diagnostics.

Warning: Information printed by this module can be forged by a network attacker! System administrator MUST
verify values printed by this module and fix local system time using a trusted source.

This module is useful for debugging purposes. It runs only once during resolver start does not anything after that. It
is enabled by default. You may disable the module by appending modules.unload('detect_time_skew') to your
configuration.

7.7.11 Detect discontinuous jumps in the system time

This module detect discontinuous jumps in the system time when resolver is running. It clears cache when a significant
backward time jumps occurs.

Time jumps are usually created by NTP time change or by admin intervention. These change can affect cache records
as they store timestamp and TTL in real time.

If you want to preserve cache during time travel you should disable this module by modules.
unload('detect_time_jump').

Due to the way monotonic system time works on typical systems, suspend-resume cycles will be perceived as forward
time jumps, but this direction of shift does not have the risk of using records beyond their intended TTL, so forward
jumps do not cause erasing the cache.

7.7.12 Debugging options

In case the resolver crashes, it is often helpful to collect a coredump from the crashed process. Configuring the system
to collect coredump from crashed process is out of the scope of this documentation, but some tips can be found here.

Kresd uses its own mechanism for assertions. They are checks that should always pass and indicate some weird or
unexpected state if they don’t. In such cases, they show up in the log as errors. By default, the process recovers from
those states if possible, but the behaviour can be changed with the following options to aid further debugging.

debugging.assertion_abort = false|true

Return
boolean (default: false in meson’s release mode, true otherwise)

Allow the process to be aborted in case it encounters a failed assertion. (Some critical conditions always lead to
abortion, regardless of settings.)

debugging.assertion_fork = milliseconds

Return
int (default: 5 minutes in meson’s release mode, 0 otherwise)

If a process should be aborted, it can be done in two ways. When this is set to nonzero (default), a child is forked
and aborted to obtain a coredump, while the parent process recovers and keeps running. This can be useful to
debug a rare issue that occurs in production, since it doesn’t affect the main process.

76 Chapter 7. Advanced configuration (Lua)

https://lists.nic.cz/hyperkitty/list/knot-resolver-users@lists.nic.cz/message/GUHW4JSDXZ6SZUAYYQ3U2WWOZEIVVF2S/

Knot Resolver, Release 6.0.0a1

As the dumping can be costly, the value is a lower bound on delay between consecutive coredumps of each
process. It is randomized by +-25% each time.

7.7.13 Logging API

Group names

LOG_GRP_SYSTEM_TAG

system: catch-all log for generic messages

LOG_GRP_CACHE_TAG

cache: operations related to cache

LOG_GRP_IO_TAG

io: input/output operations

LOG_GRP_NETWORK_TAG

net: network configuration and operation

LOG_GRP_TA_TAG

ta: basic log for trust anchors (TA)

LOG_GRP_TASENTINEL_TAG

tasent: TA sentinel

LOG_GRP_TASIGNALING_TAG

tasign: TA signal query

LOG_GRP_TAUPDATE_TAG

taupd: TA update

LOG_GRP_TLS_TAG

tls: TLS encryption layer

LOG_GRP_GNUTLS_TAG

gnutls: low-level logs from GnuTLS

LOG_GRP_TLSCLIENT_TAG

tls_cl: TLS client messages (used for TLS forwarding)

LOG_GRP_XDP_TAG

xdp: operations related to XDP

LOG_GRP_DOH_TAG

doh: DNS-over-HTTPS logger (doh2 implementation)

7.7. Logging, monitoring, diagnostics 77

Knot Resolver, Release 6.0.0a1

LOG_GRP_DNSSEC_TAG

dnssec: operations related to DNSSEC

LOG_GRP_HINT_TAG

hint: operations related to static hints

LOG_GRP_PLAN_TAG

plan: operations related to resolution plan

LOG_GRP_ITERATOR_TAG

iterat: operations related to iterate layer

LOG_GRP_VALIDATOR_TAG

valdtr: operations related to validate layer

LOG_GRP_RESOLVER_TAG

resolv: operations related to resolving

LOG_GRP_SELECTION_TAG

select: operations related to server selection

LOG_GRP_ZCUT_TAG

zonecut: operations related to zone cut

LOG_GRP_COOKIES_TAG

cookie: operations related to cookies

LOG_GRP_STATISTICS_TAG

statis: operations related to statistics

LOG_GRP_REBIND_TAG

rebind: operations related to rebinding

LOG_GRP_WORKER_TAG

worker: operations related to worker layer

LOG_GRP_POLICY_TAG

policy: operations related to policy

LOG_GRP_DAF_TAG

daf: operations related to DAF module

LOG_GRP_DETECTTIMEJUMP_TAG

timejm: operations related to time jump

78 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

LOG_GRP_DETECTTIMESKEW_TAG

timesk: operations related to time skew

LOG_GRP_GRAPHITE_TAG

graphi: operations related to graphite

LOG_GRP_PREFILL_TAG

prefil: operations related to prefill

LOG_GRP_PRIMING_TAG

primin: operations related to priming

LOG_GRP_SRVSTALE_TAG

srvstl: operations related to serve stale

LOG_GRP_WATCHDOG_TAG

wtchdg: operations related to watchdog

LOG_GRP_NSID_TAG

nsid: operations related to NSID

LOG_GRP_DNSTAP_TAG

dnstap: operations related to dnstap

LOG_GRP_TESTS_TAG

tests: operations related to tests

LOG_GRP_DOTAUTH_TAG

dotaut: DNS-over-TLS against authoritative servers

LOG_GRP_HTTP_TAG

http: http module, its web interface and legacy DNS-over-HTTPS

LOG_GRP_CONTROL_TAG

contrl: TTY control sockets

LOG_GRP_MODULE_TAG

module: suitable for user-defined modules

LOG_GRP_DEVEL_TAG

devel: for development purposes

LOG_GRP_RENUMBER_TAG

renum: operation related to renumber

7.7. Logging, monitoring, diagnostics 79

Knot Resolver, Release 6.0.0a1

LOG_GRP_EDE_TAG

exterr: extended error module

LOG_GRP_REQDBG_TAG

reqdbg: debug logs enabled by policy actions

Logging levels

We stick very close to POSIX syslog.h

kr_log_debug(grp, fmt, ...)
Debugging message.

Can be very verbose. The level is most often used through VERBOSE_MSG.

kr_log_info(grp, fmt, ...)

kr_log_notice(grp, fmt, ...)

LOG_DEFAULT_LEVEL

Levels less severe than notice are not logged by default.

kr_log_warning(grp, fmt, ...)

kr_log_error(grp, fmt, ...)
Significant error.

The process continues, except for configuration errors during startup.

kr_log_crit(grp, fmt, ...)
Critical condition.

The process dies. Bad configuration should not cause this.

kr_log_deprecate(grp, fmt, ...)

kr_log(fmt, ...)
Logging function for user modules.

Uses group LOG_GRP_MODULE and info level.

Parameters
• fmt – Format string

Defines

LOG_UNKNOWN_LEVEL

Negative error value.

LOG_GNUTLS_LEVEL

GnuTLS level is 5.

KR_LOG_LEVEL_IS(exp)

80 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

kr_log_req(req, qry_id, indent, grp, fmt, ...)
Log a debug-level message from a kr_request.

Typically we call kr_log_q() instead.

Parameters
• qry_uid – query ID to append to request ID, 0 means “no query”

• indent – level of indentation between [group][req.qry] and message

• grp – GROUP_NAME (without the LOG_GRP_ prefix)

• fmt – printf-like format string

kr_log_q(qry, grp, fmt, ...)
Log a debug-level message from a kr_query.

Parameters
• qry – current query

• grp – GROUP_NAME (without the LOG_GRP_ prefix)

• fmt – printf-like format string

kr_log_is_debug(grp, req)
Return whether a particular log group in a request is in debug/verbose mode.

Typically you use this as condition to compute some data to be logged, in case that’s considered too expensive
to do unless it really gets logged.

The request can be NULL, and there’s a _qry() shorthand to specify query instead.

kr_log_is_debug_qry(grp, qry)

KR_LOG_SJM_STR(x)

SD_JOURNAL_METADATA

Typedefs

typedef int kr_log_level_t

Enums

enum kr_log_target_t
Values:

enumerator LOG_TARGET_SYSLOG

enumerator LOG_TARGET_STDERR

enumerator LOG_TARGET_STDOUT

7.7. Logging, monitoring, diagnostics 81

Knot Resolver, Release 6.0.0a1

enumerator LOG_TARGET_DEFAULT

enum kr_log_group
Values:

enumerator LOG_GRP_UNKNOWN

enumerator LOG_GRP_SYSTEM

enumerator LOG_GRP_CACHE

enumerator LOG_GRP_IO

enumerator LOG_GRP_NETWORK

enumerator LOG_GRP_TA

enumerator LOG_GRP_TLS

enumerator LOG_GRP_GNUTLS

enumerator LOG_GRP_TLSCLIENT

enumerator LOG_GRP_XDP

enumerator LOG_GRP_DOH

enumerator LOG_GRP_DNSSEC

enumerator LOG_GRP_HINT

enumerator LOG_GRP_PLAN

enumerator LOG_GRP_ITERATOR

enumerator LOG_GRP_VALIDATOR

enumerator LOG_GRP_RESOLVER

enumerator LOG_GRP_SELECTION

enumerator LOG_GRP_ZCUT

82 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

enumerator LOG_GRP_COOKIES

enumerator LOG_GRP_STATISTICS

enumerator LOG_GRP_REBIND

enumerator LOG_GRP_WORKER

enumerator LOG_GRP_POLICY

enumerator LOG_GRP_TASENTINEL

enumerator LOG_GRP_TASIGNALING

enumerator LOG_GRP_TAUPDATE

enumerator LOG_GRP_DAF

enumerator LOG_GRP_DETECTTIMEJUMP

enumerator LOG_GRP_DETECTTIMESKEW

enumerator LOG_GRP_GRAPHITE

enumerator LOG_GRP_PREFILL

enumerator LOG_GRP_PRIMING

enumerator LOG_GRP_SRVSTALE

enumerator LOG_GRP_WATCHDOG

enumerator LOG_GRP_NSID

enumerator LOG_GRP_DNSTAP

enumerator LOG_GRP_TESTS

enumerator LOG_GRP_DOTAUTH

enumerator LOG_GRP_HTTP

7.7. Logging, monitoring, diagnostics 83

Knot Resolver, Release 6.0.0a1

enumerator LOG_GRP_CONTROL

enumerator LOG_GRP_MODULE

enumerator LOG_GRP_DEVEL

enumerator LOG_GRP_RENUMBER

enumerator LOG_GRP_EDE

enumerator LOG_GRP_REQDBG

Functions

void kr_log_target_set(kr_log_target_t target)
Set the current logging target.

bool kr_log_group_is_set(enum kr_log_group group)

void kr_log_group_add(enum kr_log_group group)

void kr_log_group_reset()

const char *kr_log_grp2name(enum kr_log_group group)

enum kr_log_group kr_log_name2grp(const char *name)

void kr_log_level_set(kr_log_level_t level)
Set the current logging level.

const char *kr_log_level2name(kr_log_level_t level)

kr_log_level_t kr_log_name2level(const char *name)
Return negative on error.

void kr_log_req1(const struct kr_request *const req, uint32_t qry_uid, const unsigned int indent, enum
kr_log_group group, const char *tag, const char *fmt, ...)

void kr_log_q1(const struct kr_query *qry, enum kr_log_group group, const char *tag, const char *fmt, ...)

bool kr_log_is_debug_fun(enum kr_log_group group, const struct kr_request *req)

void kr_log_fmt(enum kr_log_group group, kr_log_level_t level, const char *file, const char *line, const char
*func, const char *fmt, ...)

84 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

Variables

kr_log_target_t kr_log_target
Current logging target.

Read only, please.

kr_log_level_t kr_log_level
Current logging level.

Read only, please.

7.8 DNSSEC, data verification

Good news! Knot Resolver uses secure configuration by default, and this configuration should not be changed unless
absolutely necessary, so feel free to skip over this section.

Warning: Options in this section are intended only for expert users and normally should not be needed.

Since version 4.0, DNSSEC validation is enabled by default. If you really need to turn DNSSEC off and are okay
with lowering security of your system by doing so, add the following snippet to your configuration file.

-- turns off DNSSEC validation
trust_anchors.remove('.')

The resolver supports DNSSEC including RFC 5011 automated DNSSEC TA updates and RFC 7646 negative trust
anchors. Depending on your distribution, DNSSEC trust anchors should be either maintained in accordance with the
distro-wide policy, or automatically maintained by the resolver itself.

In practice this means that you can forget about it and your favorite Linux distribution will take care of it for you.

Following functions allow to modify DNSSEC configuration if you really have to:

trust_anchors.add_file(keyfile[, readonly = false])
Parameters

• keyfile (string) – path to the file.

• readonly – if true, do not attempt to update the file.

The format is standard zone file, though additional information may be persisted in comments. Either DS or
DNSKEY records can be used for TAs. If the file does not exist, bootstrapping of root TA will be attempted. If
you want to use bootstrapping, install lua-http library.

Each file can only contain records for a single domain. The TAs will be updated according to RFC 5011 and
persisted in the file (if allowed).

Example output:

> trust_anchors.add_file('root.key')
[ta] new state of trust anchors for a domain:
. 165488 DS 19036 8 2␣
→˓49AAC11D7B6F6446702E54A1607371607A1A41855200FD2CE1CDDE32F24E8FB5

(continues on next page)

7.8. DNSSEC, data verification 85

https://datatracker.ietf.org/doc/html/rfc5011.html
https://datatracker.ietf.org/doc/html/rfc7646.html
https://luarocks.org/modules/daurnimator/http
https://datatracker.ietf.org/doc/html/rfc5011.html

Knot Resolver, Release 6.0.0a1

(continued from previous page)

nil

[ta] key: 19036 state: Valid

trust_anchors.remove(zonename)
Remove specified trust anchor from trusted key set. Removing trust anchor for the root zone effectively disables
DNSSEC validation (unless you configured another trust anchor).

> trust_anchors.remove('.')
true

If you want to disable DNSSEC validation for a particular domain but keep it enabled for the rest of DNS tree,
use trust_anchors.set_insecure().

trust_anchors.hold_down_time = 30 * day

Return
int (default: 30 * day)

Modify RFC5011 hold-down timer to given value. Intended only for testing purposes. Example: 30 * sec

trust_anchors.refresh_time = nil

Return
int (default: nil)

Modify RFC5011 refresh timer to given value (not set by default), this will force trust anchors to be updated
every N seconds periodically instead of relying on RFC5011 logic and TTLs. Intended only for testing purposes.
Example: 10 * sec

trust_anchors.keep_removed = 0

Return
int (default: 0)

How many Removed keys should be held in history (and key file) before being purged. Note: all Removed keys
will be purged from key file after restarting the process.

trust_anchors.set_insecure(nta_set)

Parameters
nta_list (table) – List of domain names (text format) representing NTAs.

When you use a domain name as an negative trust anchor (NTA), DNSSEC validation will be turned off
at/below these names. Each function call replaces the previous NTA set. You can find the current ac-
tive set in trust_anchors.insecure variable. If you want to disable DNSSEC validation completely use
trust_anchors.remove() function instead.

Example output:

> trust_anchors.set_insecure({ 'bad.boy', 'example.com' })
> trust_anchors.insecure
[1] => bad.boy
[2] => example.com

Warning: If you set NTA on a name that is not a zone cut, it may not always affect names not separated
from the NTA by a zone cut.

86 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

trust_anchors.add(rr_string)

Parameters
rr_string (string) – DS/DNSKEY records in presentation format (e.g. . 3600 IN DS
19036 8 2 49AAC11...)

Inserts DS/DNSKEY record(s) into current keyset. These will not be managed or updated, use it only for testing
or if you have a specific use case for not using a keyfile.

Note: Static keys are very error-prone and should not be used in production. Use trust_anchors.add_file()
instead.

Example output:

> trust_anchors.add('. 3600 IN DS 19036 8 2 49AAC11...')

trust_anchors.summary()

Return string with summary of configured DNSSEC trust anchors, including negative TAs.

DNSSEC is main technology to protect data, but it is also possible to change how strictly resolver checks data from
insecure DNS zones:

mode(['strict' | 'normal' | 'permissive'])
Param

New checking level specified as string (optional).

Returns
Current checking level.

Get or change resolver strictness checking level.

By default, resolver runs in normal mode. There are possibly many small adjustments hidden behind the mode
settings, but the main idea is that in permissive mode, the resolver tries to resolve a name with as few lookups
as possible, while in strict mode it spends much more effort resolving and checking referral path. However, if
majority of the traffic is covered by DNSSEC, some of the strict checking actions are counter-productive.

Glue type Modes when it is accepted Example glue1

mandatory glue strict, normal, permissive ns1.example.org
in-bailiwick glue normal, permissive ns1.example2.org
any glue records permissive ns1.example3.net

7.9 Experimental features

Following functionality and APIs are in continuous development. Features in this section may changed, replaced or
dropped in any release.

1 The examples show glue records acceptable from servers authoritative for org zone when delegating to example.org zone. Unacceptable or
missing glue records trigger resolution of names listed in NS records before following respective delegation.

7.9. Experimental features 87

Knot Resolver, Release 6.0.0a1

7.9.1 Run-time reconfiguration

Knot Resolver offers several ways to modify its configuration at run-time:

• Using control socket driven by an external system

• Using Lua program embedded in Resolver’s configuration file

Both ways can also be combined: For example the configuration file can contain a little Lua function which gathers
statistics and returns them in JSON string. This can be used by an external system which uses control socket to call
this user-defined function and to retrieve its results.

Control sockets

Control socket acts like “an interactive configuration file” so all actions available in configuration file can be executed
interactively using the control socket. One possible use-case is reconfiguring the resolver instances from another pro-
gram, e.g. a maintenance script.

Note: Each instance of Knot Resolver exposes its own control socket. Take that into account when scripting deploy-
ments with Multiple instances.

When Knot Resolver is started using Systemd (see section Upgrading to 6.0.0 from 5.x.x) it creates a control socket
in path /run/knot-resolver/control/$ID. Connection to the socket can be made from command line using e.g.
socat:

$ socat - UNIX-CONNECT:/run/knot-resolver/control/1

When successfully connected to a socket, the command line should change to something like >. Then you can interact
with kresd to see configuration or set a new one. There are some basic commands to start with.

> help() -- shows help
> net.interfaces() -- lists available interfaces
> net.list() -- lists running network services

The direct output of commands sent over socket is captured and sent back, which gives you an immediate response on
the outcome of your command. The commands and their output are also logged in contrl group, on debug level if
successful or warning level if failed (see around log_level()).

Control sockets are also a way to enumerate and test running instances, the list of sockets corresponds to the list of
processes, and you can test the process for liveliness by connecting to the UNIX socket.

map(lua_snippet)
Executes the provided string as lua code on every running resolver instance and returns the results as a table.

Key n is always present in the returned table and specifies the total number of instances the command was
executed on. The table also contains results from each instance accessible through keys 1 to n (inclusive). If any
instance returns nil, it is not explicitly part of the table, but you can detect it by iterating through 1 to n.

> map('worker.id') -- return an ID of every active instance
{

'2',
'1',
['n'] = 2,

}
> map('worker.id == "1" or nil') -- example of `nil` return value

(continues on next page)

88 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

(continued from previous page)

{
[2] = true,
['n'] = 2,

}

The order of instances isn’t guaranteed or stable. When you need to identify the instances, you may use
kluautil.kr_table_pack() function to return multiple values as a table. It uses similar semantics with n
as described above to allow nil values.

> map('require("kluautil").kr_table_pack(worker.id, stats.get("answer.total"))')
{

{
'2',
42,
['n'] = 2,

},
{

'1',
69,
['n'] = 2,

},
['n'] = 2,

}

If the command fails on any instance, an error is returned and the execution is in an undefined state (the command
might not have been executed on all instances). When using the map() function to execute any code that might
fail, your code should be wrapped in pcall() to avoid this issue.

> map('require("kluautil").kr_table_pack(pcall(net.tls, "cert.pem", "key.pem"))')
{

{
true, -- function succeeded
true, -- function return value(s)
['n'] = 2,

},
{

false, -- function failed
'error occurred...', -- the returned error message
['n'] = 2,

},
['n'] = 2,

}

7.9. Experimental features 89

https://www.lua.org/manual/5.1/manual.html#pdf-pcall

Knot Resolver, Release 6.0.0a1

Lua scripts

As it was mentioned in section Syntax, Resolver’s configuration file contains program in Lua programming language.
This allows you to write dynamic rules and helps you to avoid repetitive templating that is unavoidable with static
configuration. For example parts of configuration can depend on hostname() of the machine:

if hostname() == 'hidden' then
net.listen(net.eth0, 5353)

else
net.listen('127.0.0.1')
net.listen(net.eth1.addr[1])

end

Another example would show how it is possible to bind to all interfaces, using iteration.

for name, addr_list in pairs(net.interfaces()) do
net.listen(addr_list)

end

Tip: Some users observed a considerable, close to 100%, performance gain in Docker containers when they bound
the daemon to a single interface:ip address pair. One may expand the aforementioned example with browsing available
addresses as:

addrpref = env.EXPECTED_ADDR_PREFIX
for k, v in pairs(addr_list["addr"]) do

if string.sub(v,1,string.len(addrpref)) == addrpref then
net.listen(v)

...

You can also use third-party Lua libraries (available for example through LuaRocks) as on this example to download
cache from parent, to avoid cold-cache start.

local http = require('socket.http')
local ltn12 = require('ltn12')

local cache_size = 100*MB
local cache_path = '/var/cache/knot-resolver'
cache.open(cache_size, 'lmdb://' .. cache_path)
if cache.count() == 0 then

cache.close()
-- download cache from parent
http.request {

url = 'http://parent/data.mdb',
sink = ltn12.sink.file(io.open(cache_path .. '/data.mdb', 'w'))

}
-- reopen cache with 100M limit
cache.open(cache_size, 'lmdb://' .. cache_path)

end

90 Chapter 7. Advanced configuration (Lua)

https://luarocks.org/

Knot Resolver, Release 6.0.0a1

Helper functions

Following built-in functions are useful for scripting:

env (table)

Retrieve environment variables.

Example:

env.USER -- equivalent to $USER in shell

fromjson(JSONstring)

Returns
Lua representation of data in JSON string.

Example:

> fromjson('{"key1": "value1", "key2": {"subkey1": 1, "subkey2": 2}}')
[key1] => value1
[key2] => {

[subkey1] => 1
[subkey2] => 2

}

hostname([fqdn])
Returns

Machine hostname.

If called with a parameter, it will set kresd’s internal hostname. If called without a parameter, it will return
kresd’s internal hostname, or the system’s POSIX hostname (see gethostname(2)) if kresd’s internal hostname is
unset.

This also affects ephemeral (self-signed) certificates generated by kresd for DNS over TLS.

package_version()

Returns
Current package version as string.

Example:

> package_version()
2.1.1

resolve(name, type[, class = kres.class.IN, options = {}, finish = nil, init = nil])
Parameters

• name (string) – Query name (e.g. ‘com.’)

• type (number) – Query type (e.g. kres.type.NS)

• class (number) – Query class (optional) (e.g. kres.class.IN)

• options (strings) – Resolution options (see kr_qflags)

• finish (function) – Callback to be executed when resolution completes (e.g. function cb
(pkt, req) end). The callback gets a packet containing the final answer and doesn’t have to
return anything.

7.9. Experimental features 91

Knot Resolver, Release 6.0.0a1

• init (function) – Callback to be executed with the kr_request before resolution starts.

Returns
boolean, true if resolution was started

The function can also be executed with a table of arguments instead. This is useful if you’d like to skip some
arguments, for example:

resolve {
name = 'example.com',
type = kres.type.AAAA,
init = function (req)
end,

}

Example:

-- Send query for root DNSKEY, ignore cache
resolve('.', kres.type.DNSKEY, kres.class.IN, 'NO_CACHE')

-- Query for AAAA record
resolve('example.com', kres.type.AAAA, kres.class.IN, 0,
function (pkt, req)
-- Check answer RCODE
if pkt:rcode() == kres.rcode.NOERROR then
-- Print matching records
local records = pkt:section(kres.section.ANSWER)
for i = 1, #records do
local rr = records[i]
if rr.type == kres.type.AAAA then

print ('record:', kres.rr2str(rr))
end

end
else

print ('rcode: ', pkt:rcode())
end

end)

tojson(object)

Returns
JSON text representation of object.

Example:

> testtable = { key1 = "value1", "key2" = { subkey1 = 1, subkey2 = 2 } }
> tojson(testtable)
{"key1":"value1","key2":{"subkey1":1,"subkey2":2}}

92 Chapter 7. Advanced configuration (Lua)

Knot Resolver, Release 6.0.0a1

Asynchronous events

Lua language used in configuration file allows you to script actions upon various events, for example publish statistics
each minute. Following example uses built-in function event.recurrent() which calls user-supplied anonymous
function:

local ffi = require('ffi')
modules.load('stats')

-- log statistics every second
local stat_id = event.recurrent(1 * second, function(evid)

log_info(ffi.C.LOG_GRP_STATISTICS, table_print(stats.list()))
end)

-- stop printing statistics after first minute
event.after(1 * minute, function(evid)

event.cancel(stat_id)
end)

Note that each scheduled event is identified by a number valid for the duration of the event, you may use it to cancel
the event at any time.

To persist state between two invocations of a function Lua uses concept called closures. In the following example
function speed_monitor() is a closure function, which provides persistent variable called previous.

local ffi = require('ffi')
modules.load('stats')

-- make a closure, encapsulating counter
function speed_monitor()

local previous = stats.list()
-- monitoring function
return function(evid)

local now = stats.list()
local total_increment = now['answer.total'] - previous['answer.total']
local slow_increment = now['answer.slow'] - previous['answer.slow']
if slow_increment / total_increment > 0.05 then

log_warn(ffi.C.LOG_GRP_STATISTICS, 'WARNING! More than 5 %% of queries was␣
→˓slow!')

end
previous = now -- store current value in closure

end
end

-- monitor every minute
local monitor_id = event.recurrent(1 * minute, speed_monitor())

Another type of actionable event is activity on a file descriptor. This allows you to embed other event loops or mon-
itor open files and then fire a callback when an activity is detected. This allows you to build persistent services like
monitoring probes that cooperate well with the daemon internal operations. See event.socket().

Filesystem watchers are possible with worker.coroutine() and cqueues, see the cqueues documentation for more
information. Here is an simple example:

7.9. Experimental features 93

https://www.lua.org/pil/6.1.html
https://25thandclement.com/~william/projects/cqueues.html

Knot Resolver, Release 6.0.0a1

local notify = require('cqueues.notify')
local watcher = notify.opendir('/etc')
watcher:add('hosts')

-- Watch changes to /etc/hosts
worker.coroutine(function ()
for flags, name in watcher:changes() do
for flag in notify.flags(flags) do
-- print information about the modified file
print(name, notify[flag])

end
end

end)

Timers and events reference

The timer represents exactly the thing described in the examples - it allows you to execute closures after specified time,
or event recurrent events. Time is always described in milliseconds, but there are convenient variables that you can use
- sec, minute, hour. For example, 5 * hour represents five hours, or 5*60*60*100 milliseconds.

event.after(time, function)

Returns
event id

Execute function after the specified time has passed. The first parameter of the callback is the event itself.

Example:

event.after(1 * minute, function() print('Hi!') end)

event.recurrent(interval, function)

Returns
event id

Execute function immediately and then periodically after each interval.

Example:

msg_count = 0
event.recurrent(5 * sec, function(e)

msg_count = msg_count + 1
print('Hi #'..msg_count)

end)

event.reschedule(event_id, timeout)
Reschedule a running event, it has no effect on canceled events. New events may reuse the event_id, so the
behaviour is undefined if the function is called after another event is started.

Example:

local interval = 1 * minute
event.after(1 * minute, function (ev)

print('Good morning!')
(continues on next page)

94 Chapter 7. Advanced configuration (Lua)

https://www.lua.org/pil/6.1.html

Knot Resolver, Release 6.0.0a1

(continued from previous page)

-- Halve the interval for each iteration
interval = interval / 2
event.reschedule(ev, interval)

end)

event.cancel(event_id)
Cancel running event, it has no effect on already canceled events. New events may reuse the event_id, so the
behaviour is undefined if the function is called after another event is started.

Example:

e = event.after(1 * minute, function() print('Hi!') end)
event.cancel(e)

Watch for file descriptor activity. This allows embedding other event loops or simply firing events when a pipe endpoint
becomes active. In another words, asynchronous notifications for daemon.

event.socket(fd, cb)

Parameters
• fd (number) – file descriptor to watch

• cb – closure or callback to execute when fd becomes active

Returns
event id

Execute function when there is activity on the file descriptor and calls a closure with event id as the first parameter,
status as second and number of events as third.

Example:

e = event.socket(0, function(e, status, nevents)
print('activity detected')

end)
e.cancel(e)

Asynchronous function execution

The event package provides a very basic mean for non-blocking execution - it allows running code when activity on a file
descriptor is detected, and when a certain amount of time passes. It doesn’t however provide an easy to use abstraction
for non-blocking I/O. This is instead exposed through the worker package (if cqueues Lua package is installed in the
system).

worker.coroutine(function)
Start a new coroutine with given function (closure). The function can do I/O or run timers without blocking
the main thread. See cqueues for documentation of possible operations and synchronization primitives. The
main limitation is that you can’t wait for a finish of a coroutine from processing layers, because it’s not currently
possible to suspend and resume execution of processing layers.

Example:

worker.coroutine(function ()
for i = 0, 10 do

(continues on next page)

7.9. Experimental features 95

https://25thandclement.com/~william/projects/cqueues.html

Knot Resolver, Release 6.0.0a1

(continued from previous page)

print('executing', i)
worker.sleep(1)

end
end)

worker.sleep(seconds)
Pause execution of current function (asynchronously if running inside a worker coroutine).

Example:

function async_print(testname, sleep)
log(testname .. ': system time before sleep' .. tostring(os.time())
worker.sleep(sleep) -- other coroutines continue execution now
log(testname .. ': system time AFTER sleep' .. tostring(os.time())

end

worker.coroutine(function() async_print('call #1', 5) end)
worker.coroutine(function() async_print('call #2', 3) end)

Output from this example demonstrates that both calls to function async_print were executed asynchronously:

call #2: system time before sleep 1578065073
call #1: system time before sleep 1578065073
call #2: system time AFTER sleep 1578065076
call #1: system time AFTER sleep 1578065078

Etcd support

The etcd module connects to etcd peers and watches for configuration changes. By default, the module watches the
subtree under /knot-resolver directory, but you can change this in the etcd library configuration.

The subtree structure corresponds to the configuration variables in the declarative style.

$ etcdctl set /knot-resolver/net/127.0.0.1 53
$ etcdctl set /knot-resolver/cache/size 10000000

Configures all listening nodes to following configuration:

net = { '127.0.0.1' }
cache.size = 10000000

Example configuration

modules.load('etcd')
etcd.config({

prefix = '/knot-resolver',
peer = 'http://127.0.0.1:7001'

})

96 Chapter 7. Advanced configuration (Lua)

https://etcd.io/
https://github.com/mah0x211/lua-etcd#cli-err--etcdnew-optiontable-

Knot Resolver, Release 6.0.0a1

Warning: Work in progress!

Dependencies

• lua-etcd library available in LuaRocks

$ luarocks --lua-version 5.1 install etcd --from=https://mah0x211.github.io/
rocks/

7.9.2 Experimental DNS-over-TLS Auto-discovery

This experimental module provides automatic discovery of authoritative servers’ supporting DNS-over-TLS. The mod-
ule uses magic NS names to detect SPKI fingerprint which is very similar to dnscurve mechanism.

Warning: This protocol and module is experimental and can be changed or removed at any time. Use at own risk,
security properties were not analyzed!

How it works

The module will look for NS target names formatted as: dot-{base32(sha256(SPKI))}....

For instance, Knot Resolver will detect NS names formatted like this

example.com NS dot-tpwxmgqdaurcqxqsckxvdq5sty3opxlgcbjj43kumdq62kpqr72a.example.com

and automatically discover that example.com NS supports DoT with the base64-encoded SPKI di-
gest of m+12GgMFIiheEhKvUcOynjbn3WYQUp5tVGDh7Snwj/Q= and will associate it with the IPs of
dot-tpwxmgqdaurcqxqsckxvdq5sty3opxlgcbjj43kumdq62kpqr72a.example.com.

In that example, the base32 encoded (no padding) version of the sha256 PIN is
tpwxmgqdaurcqxqsckxvdq5sty3opxlgcbjj43kumdq62kpqr72a, which when converted to base64 translates
to m+12GgMFIiheEhKvUcOynjbn3WYQUp5tVGDh7Snwj/Q=.

Generating NS target names

To generate the NS target name, use the following command to generate the base32 encoded string of the SPKI finger-
print:

openssl x509 -in /path/to/cert.pem -pubkey -noout | \
openssl pkey -pubin -outform der | \
openssl dgst -sha256 -binary | \
base32 | tr -d '=' | tr '[:upper:]' '[:lower:]'
tpwxmgqdaurcqxqsckxvdq5sty3opxlgcbjj43kumdq62kpqr72a

Then add a target to your NS with: dot-${b32}.a.example.com

Finally, map dot-${b32}.a.example.com to the right set of IPs.

7.9. Experimental features 97

https://github.com/mah0x211/lua-etcd
https://en.wikipedia.org/wiki/Simple_public-key_infrastructure
https://dnscurve.org/

Knot Resolver, Release 6.0.0a1

...

...
;; QUESTION SECTION:
;example.com. IN NS

;; AUTHORITY SECTION:
example.com. 3600 IN NS dot-
→˓tpwxmgqdaurcqxqsckxvdq5sty3opxlgcbjj43kumdq62kpqr72a.a.example.com.
example.com. 3600 IN NS dot-
→˓tpwxmgqdaurcqxqsckxvdq5sty3opxlgcbjj43kumdq62kpqr72a.b.example.com.

;; ADDITIONAL SECTION:
dot-tpwxmgqdaurcqxqsckxvdq5sty3opxlgcbjj43kumdq62kpqr72a.a.example.com. 3600 IN A 192.0.
→˓2.1
dot-tpwxmgqdaurcqxqsckxvdq5sty3opxlgcbjj43kumdq62kpqr72a.b.example.com. 3600 IN AAAA␣
→˓2001:DB8::1
...
...

Example configuration

To enable the module, add this snippet to your config:

-- Start an experiment, use with caution
modules.load('experimental_dot_auth')

This module requires standard basexx Lua library which is typically provided by lua-basexx package.

Caveats

The module relies on seeing the reply of the NS query and as such will not work if Knot Resolver uses data from its
cache. You may need to delete the cache before starting kresd to work around this.

The module also assumes that the NS query answer will return both the NS targets in the Authority section as well as
the glue records in the Additional section.

Dependencies

• lua-basexx available in LuaRocks

98 Chapter 7. Advanced configuration (Lua)

https://github.com/aiq/basexx

CHAPTER

EIGHT

SYSTEMD

In the default installation, Knot Resolver contains systemd integration and starting it on such system usually involves
only one command.

systemctl enable --now knot-resolver.service

If you don’t have systemd service file for Knot Resolver already installed in your system, you can create one manually
with the folling content:

[Unit]
Description=Knot Resolver Manager
Documentation=man:knot-resolver.systemd(7)
Wants=network-online.target
After=network-online.target
Before=nss-lookup.target
Wants=nss-lookup.target

[Service]
Type=notify
TimeoutStartSec=10s
ExecStart=@bin_dir@/knot-resolver --config=@etc_dir@/config.yml
ExecReload=@bin_dir@/kresctl --socket @run_dir@/manager.sock reload
KillSignal=SIGINT
WorkingDirectory=@systemd_work_dir@
User=@user@
Group=@group@
CapabilityBoundingSet=CAP_NET_BIND_SERVICE CAP_SETPCAP
AmbientCapabilities=CAP_NET_BIND_SERVICE CAP_SETPCAP

[Install]
WantedBy=multi-user.target

Note: Replace words surrounded by @ to some real values (i.e. @user@ to a user you want Knot Resolver to run as).

99

Knot Resolver, Release 6.0.0a1

100 Chapter 8. Systemd

CHAPTER

NINE

MANUAL

The Knot Resolver can be started with the command knot-resolver. You can provide an optional argument
--config path/to/config.yml to load a different than default configuration file.

The resolver does not have any external runtime dependencies and it should be able to run in most environments. It
should be possible to wrap it with any container technology.

9.1 Multiple instances on a single server

The only limitation for running multiple instances of Knot Resolver is that all instances must have a different runtime
directory. There are however safeguards in place that should prevent accidental runtime directory conflicts.

It is possible to share cache between multiple instances, just make sure that all instances have the same cache config
and there is only a single garbage collector running (disable it in all but one config file).

101

Knot Resolver, Release 6.0.0a1

102 Chapter 9. Manual

CHAPTER

TEN

DOCKER

Note: Before version 6, our Docker images were not meant to be used in production. This is no longer the case and
with the introduction of kres-manager, Knot Resolver runs in containers without any issues.

An official Docker image can be found on Docker Hub. The image contains Knot Resolver as if it was installed from
our official distro packages.

docker run --rm -ti -P docker.io/cznic/knot-resolver

The configuration file is located at /etc/knot-resolver/config.yml and the cache is at /var/cache/
knot-resolver. We recommend configuring a persistent cache across container restarts.

Warning: While the container image contains normal installation of Knot Resolver and there shouldn’t be any
differences between running it natively and in a container, we (the developers) do not have any experience using the
Docker image in production. Especially, beware of running the DNS resolver with a software defined network (i.e.
in Kubernetes). There will likely be some performance penalties for doing so. We haven’t done any measurements
comparing different types of installations so we don’t know the performance differences. If you have done some
measurements yourself, please reach out to us and we will share it here with everyone else.

103

https://hub.docker.com/r/cznic/knot-resolver

Knot Resolver, Release 6.0.0a1

104 Chapter 10. Docker

CHAPTER

ELEVEN

ADVANCED

Warning: This page is intended for experienced users only. If you follow these instructions, you are not protected
from footguns elimited with the introduction of the kres-manager. However, if you want to continue using Knot
Resolver the same as before the version 6.0.0 this is a chapter for you.

For new and less experienced users, we recommend using the newer approach starting in the Getting Started chapter.

11.1 Usage without the manager

There are a few downsides to using the Knot Resolver without the manager:.

• Configuration is a imperative Lua script and can’t be properly validated without actually running it.

• kresd is single-threaded so you need to manage multiple processes manually.

• Restarts without downtime after configuration change are only your responsibility.

11.1.1 Startup

The older way to start Knot Resolver is to run single instance of its resolving daemon manualy using kresd@ systemd
integration. The daemon is single thread process.

$ sudo systemctl start kresd@1.service

Tip: For more information about systemd integration see man kresd.systemd.

11.1.2 Configuration

You can configure kresd by pasting your Lua code into /etc/knot-resolver/kresd.conf configuration script.
The resolver’s daemon is preconfigure to load this script when using kresd@ systemd integration.

Note: The configuration language is in fact Lua script, so you can use full power of this programming language. See
article Learn Lua in 15 minutes for a syntax overview.

The first thing you need to configure are the network interfaces to listen to.

105

http://tylerneylon.com/a/learn-lua/

Knot Resolver, Release 6.0.0a1

The following example instructs the resolver to receive standard unencrypted DNS queries on IP addresses 192.0.2.1
and 2001:db8::1. Encrypted DNS queries are accepted using DNS-over-TLS protocol on all IP addresses configured
on network interface eth0, TCP port 853.

-- unencrypted DNS on port 53 is default
net.listen('192.0.2.1')
net.listen('2001:db8::1')

net.listen(net.eth0, 853, { kind = 'tls' })

Complete configurations files examples can be found here. The example configuration files are also installed as docu-
mentation files, typically in directory /usr/share/doc/knot-resolver/examples/ (their location may be different
based on your Linux distribution).

Note: When copy&pasting examples please pay close attention to brackets and also line ordering - order of lines
matters.

Warning: This page is intended for experienced users only. If you follow these instructions, you are not protected
from footguns elimited with the introduction of the kres-manager. However, if you want to continue using Knot
Resolver the same as before the version 6.0.0 this is a chapter for you.

For new and less experienced users, we recommend using the newer approach starting in the Getting Started chapter.

11.2 Usage without systemd and without manager

Tip: Our upstream packages use systemd integration, which is the recommended way to run kresd. This section is
only relevant if you choose to use kresd without systemd integration.

kresd is designed to be a single process without the use of threads. While the cache is shared, the individual processes
are independent. This approach has several benefits, but it also comes with a few downsides, in particular:

• Without the use of threads or forking (deprecated, see #529), multiple processes aren’t managed in any way by
kresd.

• There is no maintenance thread and these tasks have to be handled by separate daemon(s) (such as Garbage
Collector).

To offset these these disadvantages without implementing process management in kresd (and reinventing the wheel),
Knot Resolver provides integration with systemd, which is widely used across GNU/Linux distributions.

If your use-case doesn’t support systemd (e.g. using macOS, FreeBSD, Docker, OpenWrt, Turris), this section describes
the differences and things to keep in mind when configuring and running kresd without systemd integration.

Warning: This page is intended for experienced users only. If you follow these instructions, you are not protected
from footguns elimited with the introduction of the kres-manager. However, if you want to continue using Knot
Resolver the same as before the version 6.0.0 this is a chapter for you.

For new and less experienced users, we recommend using the newer approach starting in the Getting Started chapter.

106 Chapter 11. Advanced

https://gitlab.nic.cz/knot/knot-resolver/tree/master/etc/config
https://gitlab.nic.cz/knot/knot-resolver/issues/529

Knot Resolver, Release 6.0.0a1

11.2.1 Process management

There following should be taken into consideration when running without systemd:

• To utilize multiple CPUs, kresd has to be executed as several independent processes.

• Maintenance daemon(s) have to be executed separately.

• If a process crashes, it might be useful to restart it.

• Using some mechanism similar to Watchdog might be desirable to recover in case a process becomes unrespon-
sive.

Please note, systemd isn’t the only process manager and other solutions exist, such as supervisord. Configuring these
is out of the scope of this document. Please refer to their respective documentations.

It is also possible to use kresd without any process management at all, which may be suitable for some purposes (such
as low-traffic local / home network resolver, testing, development or debugging).

Garbage Collector

Note: When using systemd, kres-cache-gc.service is enabled by default and does not need any manual configu-
ration.

Knot Resolver employs a separate garbage collector daemon which periodically trims the cache to keep its size below
size limit configured using cache.size.

To execute the daemon manually, you can use the following command to run it every second:

$ kres-cache-gc -c /var/cache/knot-resolver -d 1000

Warning: This page is intended for experienced users only. If you follow these instructions, you are not protected
from footguns elimited with the introduction of the kres-manager. However, if you want to continue using Knot
Resolver the same as before the version 6.0.0 this is a chapter for you.

For new and less experienced users, we recommend using the newer approach starting in the Getting Started chapter.

11.2.2 Privileges and capabilities

The kresd daemon requires privileges when it is configured to bind to well-known ports. There are multiple ways to
achieve this.

Using capabilities

The most secure and recommended way is to use capabilities and execute kresd as an unprivileged user.

• CAP_NET_BIND_SERVICE is required to bind to well-known ports.

• CAP_SETPCAP when this capability is available, kresd drops any extra capabilities after the daemon successfully
starts when running as a non-root user.

11.2. Usage without systemd and without manager 107

http://supervisord.org/

Knot Resolver, Release 6.0.0a1

Running as non-privileged user

Another possibility is to start the process as privileged user and then switch to a non-privileged user after binding to
network interfaces.

user(name[, group])
Parameters

• name (string) – user name

• group (string) – group name (optional)

Returns
boolean

Drop privileges and start running as given user (and group, if provided).

Tip: Note that you should bind to required network addresses before changing user. At the same time, you
should open the cache AFTER you change the user (so it remains accessible). A good practice is to divide
configuration in two parts:

-- privileged
net.listen('127.0.0.1')
net.listen('::1')
user('knot-resolver', 'netgrp')
-- unprivileged
cache.size = 100*MB

Example output:

> user('baduser')
invalid user name
> user('knot-resolver', 'netgrp')
true
> user('root')
Operation not permitted

Running as root

Warning: Executing processes as root is generally insecure, as these processes have unconstrained access to the
complete system at runtime.

While not recommended, it is also possible to run kresd directly as root.

108 Chapter 11. Advanced

CHAPTER

TWELVE

HTTP API

12.1 Management HTTP API

You can use HTTP API to dynamically change configuration of already running Knot Resolver. By default the API is
configured as UNIX domain socket manager.sock located in the resolver’s rundir (typically /run/knot-resolver/
). This socket is used by kresctl utility in default.

The API setting can be changed only in /etc/knot-resolver/config.yml configuration file:

management:
interface: 127.0.0.1@5000
or use unix socket instead of inteface
unix-socket: /my/new/socket.sock

First version of configuration API endpoint is available on /v1/config HTTP endpoint. Configuration API supports
following HTTP request methods:

HTTP request methods Operation
GET /v1/config[/path] returns current configuration with an ETag
PUT /v1/config[/path] upsert (try update, if does not exists, insert), appends to array
PATCH /v1/config[/path] update property using JSON Patch
DELETE /v1/config[/path] delete an existing property or list item at given index

Note: Managemnet API has other useful endpoints (metrics, schema, . . .), see the detailed API documentation.

path:
Determines specific configuration option or configuration subtree on that path. Items in lists and dictionaries are
reachable using indexes /list-name/{index}/ and keys /dict-name/{key}/.

payload:
JSON or YAML encoding is used for configuration payload.

Note: Some configuration options cannot be configured via the API for stability and security reasons(e.g. API con-
figuration itself). In the case of an attempt to configure such an option, the operation is rejected.

109

https://jsonpatch.com/

Knot Resolver, Release 6.0.0a1

12.2 Dynamically changing configuration

Knot Resolver Manager is capable of dynamically changing its configuration via an HTTP API or by reloading its
config file. Both methods are equivalent in terms of its capabilities. The kresctl utility uses the HTTP API and
provides a convinient command line interface.

12.2.1 Reloading configuration file

To reload the configuration file, send the SIGHUP signal to the Manager process. The original configuration file will be
read again, validated and in case of no errors, the changes will be applied.

Note: You can also send SIGHUP to the top-level process, to the supervisord. Normally, supervisord would stop all
processes and reload its configuration when it receives SIGHUP. However, we have eliminated this footgun in order
to prevent anyone from accidentally shutting down the whole resolver. Instead, the signal is only forwarded to the
Manager.

12.2.2 HTTP API

Listen address

By default, the Manager exposes its HTTP API on a Unix socket at FIXME. However, you can change where it listens
by changing the management.interface config option. To use kresctl, you have to tell it this value.

List of API endpoints

• GET /schema returns JSON schema of the configuration data model

• GET /schema/ui redirect to an external website with the JSON schema visualization

• GET /metrics provides Prometheus metrics

• GET / static response that could be used to determine, whether the Manager is running

• POST /stop gracefully stops the Manager, empty request body

• {GET,PUT,DELETE,PATCH} /v1/config allows reading and modifying current configuration

Config modification endpoint (v1)

Note: The v1 version qualifier is there for future-proofing. We don’t have any plans at the moment to change the API
any time soon. If that happens, we will support both old and new API versions for the some transition period.

The API by default expects JSON, but can also parse YAML when the Content-Type header is set to application/
yaml or text/vnd.yaml. The return value is always a JSON with Content-Type: application/json. The
schema of input and output is always a subtree of the configuration data model which is described by the JSON schema
exposed at /schema.

The API can operate on any configuration subtree by specifying a JSON pointer in the URL path (property names
and list indices joined with /). For example, to get the number of worker processes, you can send GET request to
v1/config/workers.

The different HTTP methods perform different modifications of the configuration:

• GET return subtree of the current configuration

110 Chapter 12. HTTP API

https://www.rfc-editor.org/rfc/rfc6901

Knot Resolver, Release 6.0.0a1

• PUT set property

• DELETE removes the given property or list item at the given index

• PATCH updates the configuration using JSON Patch

To prevent race conditions when changing configuration from multiple clients simultaneously, every response from the
Manager has an ETag header set. Requests then accept If-Match and If-None-Match headers with the latest ETag
value and the corresponding request processing fails with HTTP error code 412 (precondition failed).

12.2. Dynamically changing configuration 111

https://jsonpatch.com/

Knot Resolver, Release 6.0.0a1

112 Chapter 12. HTTP API

CHAPTER

THIRTEEN

KRESCTL UTILITY

Command-line utility that helps communicate with the management API . It also provides tooling to work with declar-
ative configuration (validate, convert).

-h, --help

Shows help message. It can be also used with every command for its help message.

13.1 Connecting to the management API

Most commands require connection to the management API . With default Knot Resolver configuration, kresctl should
communicate with the resolver withou need to specify --socket option. If not, this option must be set for each
command.

-s <socket>, --socket <socket>

Default
“./manager.sock”

Optional, path to Unix-domain socket or network interface of the management API .

$ kresctl --socket http://127.0.0.1@5000 {command} # network interface, port 5000
$ kresctl --socket /path/to/socket.sock {command} # unix-domain socket location

13.2 Commands

The following possitional arguments determine what kind of command will be executed. Only one of these arguments
can be selected during the execution of a single krestctl command.

config

Performs operations on the running resolver’s configuration. Requires connection to the management API.

Operations:
Use one of the following operations to be performed on the configuration.

get

Get current configuration from the resolver.

-p <path>, --path <path>

Optional, path (JSON pointer, RFC6901) to the configuration resources. By default, the entire config-
uration is selected.

113

Knot Resolver, Release 6.0.0a1

--json, --yaml

Default
--json

Get configuration data in JSON or YAML format.

<file>

Optional, path to the file where to save exported configuration data. If not specified, data will be
printed.

set

Set new configuration for the resolver.

-p <path>, --path <path>

Optional, path (JSON pointer, RFC6901) to the configuration resources. By default, the entire config-
uration is selected.

--json, --yaml

Default
--json

Set configuration data in JSON or YAML format.

[<file> | <value>]

Optional, path to file with new configuraion or new configuration value. If not specified, value will be
readed from stdin.

delete

Delete given configuration property or list item at the given index.

-p <path>, --path <path>

Optional, path (JSON pointer, RFC6901) to the configuration resources. By default, the entire config-
uration is selected.

This command reads current network configuration subtree from the resolver and exports it to file in YAML
format.

$ kresctl config get --yaml -p /network ./network-config.yaml

Next command changes workers configuration to 8.

$ kresctl config set -p /workers 8

metrics

Reads agregated metrics data in Propmetheus format directly from the running resolver. Requires connection to
the management API.

<file>

Optional, file where to export Prometheus metrics. If not specified, the metrics are printed.

$ kresctl metrics ./metrics/data.txt

schema

Shows JSON-schema repersentation of the Knot Resolver’s configuration.

-l, --live

Get configuration JSON-schema from the running resolver. Requires connection to the management API.

114 Chapter 13. kresctl utility

Knot Resolver, Release 6.0.0a1

<file>

Optional, file where to export JSON-schema. If not specified, the JSON-schema is printed.

$ kresctl schema --live ./mydir/config-schema.json

validate

Validates configuration in JSON or YAML format.

<input_file>

File with configuration in YAML or JSON format.

$ kresctl validate input-config.json

convert

Converts JSON or YAML configuration to Lua script.

<input_file>

File with configuration in YAML or JSON format.

<output_file>

Optional, output file for converted configuration in Lua script. If not specified, converted configuration is
printed.

$ kresctl convert input-config.yaml output-script.lua

reload

Tells the resolver to reload YAML configuration file. Old processes are replaced by new ones (with updated
configuration) using rolling restarts. So there will be no DNS service unavailability during reload operation.
Requires connection to the management API.

stop

Tells the resolver to shutdown everthing. No process will run after this command. Requires connection to the
management API.

13.2. Commands 115

Knot Resolver, Release 6.0.0a1

116 Chapter 13. kresctl utility

CHAPTER

FOURTEEN

UPGRADING TO 6.0.0 FROM 5.X.X

Version 6 of Knot Resolver brings one significant change - it introduces Knot Resolver Manager - a new way for
interacting with Knot Resolver. The Manager brings several new features:

• new declarative configuration
• HTTP API to change configuration on the fly without downtime

• it hides complexities of running multiple instances of kresd

Now, you might be worried about the future of kresd. No worries, you can use kresd directly the same way you did
before, nothing changes there right now. However, in the long run, we might make breaking changes in the way kresd
is configured and using it directly is from now on considered advanced.

With the release of version 6, there is a new way to configure and control your running kresd instances so that you
don’t have to configure multiple systemd services. The new Knot Resolver Manager handles it for you. In the table
below, you can find comparison of how things were done before and how they can be done now.

14.1 Command rosetta

In the table below, you can compare the way Knot Resolver was used before and how it can be used now.

117

Knot Resolver, Release 6.0.0a1

Task How to do it now How it was done before
start resolver systemctl start knot-resolver systemctl start kresd@1
stop resolver systemctl stop knot-resolver systemctl stop kresd@1
start resolver with 4
worker processes

set /workers to 4 in the config file manually start 4 services by
systemctl start kresd@{1,
2,3,4}

rolling restart after
updating config

systemctl reload knot-resolver (or use
API or kresctl)

manually restart individual kresd@
services one by one

open logs of all in-
stances

journalctl -u knot-resolver journalctl -u system-kresd.
slice

open log of a single
kresd instances

journalctl -u knot-resolver _PID=xxx journalctl -u kresd@1

updating config pro-
gramatically

use HTTP API or kresctl command write a custom tool to generate new
config and restart kresd’s

handling errors dur-
ing config changes

HTTP API just reports error, resolver keeps run-
ning with previous config

custom tools for every user

validate new config kresctl validate path/to/new/config.
yml (not fully bullet proof), then try to run
it

run kresd with the config and see if
it fails

look at the Lua con-
fig

kresctl convert path/to/new/config.
yml

cat /path/to/config.conf

gather metrics point Prometheus etc. at the single HTTP API collect metrics manually from all in-
dividual processes

118 Chapter 14. Upgrading to 6.0.0 from 5.x.x

CHAPTER

FIFTEEN

UPGRADING

This section summarizes steps required when upgrading to newer Knot Resolver versions. We advise users to also read
Release notes for respective versions. Section Module changes is relevant only for users who develop or use third-party
modules.

15.1 Upcoming changes

Following section provides information about selected changes in not-yet-released versions. We advise users to prepare
for these changes sooner rather than later to make it easier to upgrade to newer versions when they are released.

• Command line option --forks (-f) is deprecated and will be eventually removed. Preferred way to manage
Multiple instances is to use a process manager, e.g. systemd or supervisord.

• Function verbose() is deprecated and will be eventually removed. Prefered way to change logging level is use
to log_level().

15.2 5.x to 6.0

• detailed upgrade guide <upgrading-to-6>

15.3 5.4 to 5.5

15.3.1 Packagers & Developers

• Knot DNS >= 3.0.2 is required.

15.3.2 Module API changes

• Function cache.zone_import was removed; you can use ffi.C.zi_zone_import instead (different API).

• When using PROXYv2 protocol, the meaning of qsource.flags and qsource.comm_flags in kr_request
changes so that flags describes the original client communicating with the proxy, while comm_flags describes
the proxy communicating with the resolver. When there is no proxy, flags and comm_flags are the same.

119

https://gitlab.nic.cz/knot/knot-resolver/-/issues/631
https://systemd.io/
http://supervisord.org/

Knot Resolver, Release 6.0.0a1

15.4 5.3 to 5.4

15.4.1 Configuration file

• kind='doh' in net.listen() was renamed to kind='doh_legacy'. It is recommended to switch to the new
DoH implementation with kind='doh2'.

• verbose() has been deprecated. In case you want to change logging level, there is new function log_level().

15.4.2 Packagers & Developers

• meson option verbose_log was removed.

15.4.3 Module changes

• lua function warn() was removed, use log_warn() instead. The new function takes a log group number as the
first argument.

• C functions kr_log_req() and kr_log_q() were replaced by kr_log_req1() and kr_log_q1() respec-
tively. The new function have slightly different API.

15.5 5.2 to 5.3

15.5.1 Configuration file

• Module dnstap: option log_responses has been moved inside a new client section. Refer to the configura-
tion example in Dnstap (traffic collection).

15.5.2 Packagers & Developers

• Knot DNS >= 2.9 is required.

15.6 5.1 to 5.2

15.6.1 Users

• DoH over HTTP/1 and unencrypted transports is still available in legacy http module (kind='doh'). This module
will not receive receive any more bugfixes and will be eventually removed.

• Users of Control sockets API need to terminate each command sent to resolver with newline character (ASCII
\n). Correct usage: cache.stats()\n. Newline terminated commands are accepted by all resolver versions
>= 1.0.0.

• DNS Flag Day 2020 is now effective and Knot Resolver uses maximum size of UDP answer to 1232 bytes. Please
double-check your firewall, it has to allow DNS traffic on UDP and also TCP port 53.

120 Chapter 15. Upgrading

https://www.dnsflagday.net/2020/

Knot Resolver, Release 6.0.0a1

• Human readable output in interactive mode and from Control sockets was improved and as consequence slightly
changed its format. Users who need machine readable output for scripts should use Lua function tojson() to
convert Lua values into standard JSON format instead of attempting to parse the human readable output. For ex-
ample API call tojson(cache.stats())\n will return JSON string with cache.stats() results represented
as dictionary. Function tojson() is available in all resolver versions >= 1.0.0.

15.6.2 Configuration file

• Statistics exporter Graphite/InfluxDB/Metronome now uses default prefix which combines hostname() and
worker.id instead of bare hostname(). This prevents Multiple instances from sending conflicting statistics
to server. In case you want to continue in previous time series you can manually set the old values using option
prefix in Graphite configuration. Beware that non-default values require careful Instance-specific configuration
to avoid conflicting names.

• Lua variable worker.id is now a string with either Systemd instance name or PID (instead of number). If your
custom configuration uses worker.id value please check your scripts.

15.6.3 Module changes

• Reply packet kr_request.answer is not allocated immediately when the request comes. See the new
kr_request_ensure_answer() function, wrapped for lua as req:ensure_answer().

15.7 5.0 to 5.1

15.7.1 Module changes

• Modules which use kr_request.trace_log handler need update to modified handler API. Example migration
is modules/watchdog/watchdog.lua.

• Modules which were using logger kr_log_qverbose_impl() need migration to new logger kr_log_q().
Example migration is modules/rebinding/rebinding.lua.

• Modules which were using kr_ranked_rrarray_add() should note that on success it no longer returns exclu-
sively zero but index into the array (non-negative). Error states are unchanged (negative).

15.8 4.x to 5.x

15.8.1 Users

• Control socket location has changed

4.x location 5.x location
with systemd /run/knot-resolver/control@$ID /run/knot-resolver/control/$ID
without systemd $PWD/tty/$PID $PWD/control/$PID

• -f / --forks command-line option is deprecated. In case you just want to trigger non-interactive mode, there’s
new -n / --noninteractive. This forking style was not ergonomic; with independent kresd processes you can
better utilize a process manager (e.g. systemd).

15.7. 5.0 to 5.1 121

https://gitlab.nic.cz/knot/knot-resolver/-/merge_requests/985
https://gitlab.nic.cz/knot/knot-resolver/-/merge_requests/957/diffs#6831501329bbf9e494048fe269c6b02944fc227c
https://gitlab.nic.cz/knot/knot-resolver/-/merge_requests/957/diffs#6c74dcae147221ca64286a3ed028057adb6813b9
https://gitlab.nic.cz/knot/knot-resolver/issues/529

Knot Resolver, Release 6.0.0a1

15.8.2 Configuration file

• Network interface are now configured in kresd.conf with net.listen() instead of systemd sockets (#485).
See the following examples.

Tip: You can find suggested network interface settings based on your previous systemd socket configuration in /
var/lib/knot-resolver/.upgrade-4-to-5/kresd.conf.net which is created during the package update
to version 5.x.

4.x - systemd socket file 5.x - kresd.conf

kresd.socket

[Socket]
ListenDatagram=127.0.0.1:53
ListenStream=127.0.0.1:53

net.listen('127.0.0.1', 53, { kind =
'dns' })

kresd.socket

[Socket]
FreeBind=true
BindIPv6Only=both
ListenDatagram=[::1]:53
ListenStream=[::1]:53

net.listen('127.0.0.1', 53, {
kind = 'dns', freebind = true
})

net.listen('::1', 53, { kind =
'dns', freebind = true })

kresd-tls.socket

[Socket]
ListenStream=127.0.0.1:853

net.listen('127.0.0.1', 853, { kind =
'tls' })

kresd-doh.socket

[Socket]
ListenStream=127.0.0.1:443

net.listen('127.0.0.1', 443, { kind =
'doh' })

kresd-webmgmt.socket

[Socket]
ListenStream=127.0.0.1:8453

net.listen('127.0.0.1', 8453, { kind =
'webmgmt' })

• net.listen() throws an error if it fails to bind. Use freebind=true option to bind to nonlocal addresses.

122 Chapter 15. Upgrading

https://gitlab.nic.cz/knot/knot-resolver/issues/485

Knot Resolver, Release 6.0.0a1

15.9 4.2.2 to 4.3+

15.9.1 Module changes

• In case you wrote your own module which directly calls function kr_ranked_rrarray_add(), you need to ad-
ditionally call function kr_ranked_rrarray_finalize() after each batch (before changing the added memory
regions). For a specific example see changes in dns64 module.

15.10 4.x to 4.2.1+

15.10.1 Users

• If you have previously installed knot-resolver-dbgsym package on Debian, please remove it and install
knot-resolver-dbg instead.

15.11 3.x to 4.x

15.11.1 Users

• DNSSEC validation is now turned on by default. If you need to disable it, see DNSSEC, data verification.

• -k/--keyfile and -K/--keyfile-ro daemon options were removed. If needed, use trust_anchors.
add_file() in configuration file instead.

• Configuration for HTTP module changed significantly as result of adding Legacy DNS-over-HTTPS (DoH) sup-
port. Please see examples below.

• In case you are using your own custom modules, move them to the new module location. The exact location
depends on your distribution. Generally, modules previously in /usr/lib/kdns_modules should be moved to
/usr/lib/knot-resolver/kres_modules.

Configuration file

• trust_anchors.file, trust_anchors.config() and trust_anchors.negative aliases were removed to
avoid duplicity and confusion. Migration table:

3.x configuration 4.x configuration
trust_anchors.file = path trust_anchors.add_file(path)
trust_anchors.config(path, readonly) trust_anchors.add_file(path, readonly)
trust_anchors.negative = nta_set trust_anchors.set_insecure(nta_set)

• trust_anchors.keyfile_default is no longer accessible and is can be set only at compile time. To turn off
DNSSEC, use trust_anchors.remove().

3.x configuration 4.x configuration
trust_anchors.keyfile_default = nil trust_anchors.remove('.')

15.9. 4.2.2 to 4.3+ 123

https://gitlab.nic.cz/knot/knot-resolver/commit/edb8ffef7fbe48befeb3f7164d38079dd0be3302#1fe36e8ac0729b279645f7237b7122b1c457a982

Knot Resolver, Release 6.0.0a1

• Network for HTTP endpoints is now configured using same mechanism as for normal DNS endpoints, please
refer to chapter Networking and protocols. Migration table:

3.x configuration 4.x configuration
modules = { http = { host = '192.0.2.1', port = 443
}}

see chapter Networking and proto-
cols

http.config({ host = '192.0.2.1', port = 443 }) see chapter Networking and proto-
cols

modules = { http = { endpoints = ... }} see chapter Custom HTTP services
http.config({ endpoints = ... }) see chapter Custom HTTP services

15.11.2 Packagers & Developers

• Knot DNS >= 2.8 is required.

• meson >= 0.46 and ninja is required.

• meson build system is now used for compiling the project. For instructions, see the Building from sources.
Packagers should pay attention to section Packaging for information about systemd unit files and trust anchors.

• Embedding LMDB is no longer supported, lmdb is now required as an external dependency.

• Trust anchors file from upstream is installed and used as default unless you override keyfile_default during
build.

Module changes

• Default module location has changed from {libdir}/kdns_modules to {libdir}/knot-resolver/
kres_modules. Modules are now in the lua namespace kres_modules.*.

• kr_straddr_split() API has changed.

• C modules defining *_layer or *_props symbols need to use a different style, but it’s typically a trivial change.
Instead of exporting the corresponding symbols, the module should assign pointers to its static structures inside
its *_init() function. Example migration: bogus_log module.

15.12 2.x to 3.x

15.12.1 Users

• Module Static hints has option hints.use_nodata() enabled by default, which is what most users expect. Add
hints.use_nodata(false) to your config to revert to the old behavior.

• Modules cookie and version were removed. Please remove relevant configuration lines with modules.
load() and modules = from configuration file.

• Valid configuration must open cache using cache.open() or cache.size = before executing cache operations
like cache.clear(). (Older versions were silently ignoring such cache operations.)

124 Chapter 15. Upgrading

https://gitlab.nic.cz/knot/knot-resolver/commit/2875a3970#9fa69cdc6ee1903dc22e3262f58996395acab364

Knot Resolver, Release 6.0.0a1

15.12.2 Packagers & Developers

• Knot DNS >= 2.7.2 is required.

Module changes

• API for Lua modules was refactored, please see Significant Lua API changes.

• New layer was added: answer_finalize.

• kr_request keeps ::qsource.packet beyond the begin layer.

• kr_request::qsource.tcp renamed to ::qsource.flags.tcp.

• kr_request::has_tls renamed to ::qsource.flags.tls.

• kr_zonecut_add(), kr_zonecut_del() and kr_nsrep_sort() changed parameters slightly.

15.12. 2.x to 3.x 125

Knot Resolver, Release 6.0.0a1

126 Chapter 15. Upgrading

CHAPTER

SIXTEEN

RELEASE NOTES

16.1 Version numbering

Version number format is major.minor.patch. Knot Resolver does not use semantic versioning even though the
version number looks similar.

Leftmost number which was changed signalizes what to expect when upgrading:

Major version
• Manual upgrade steps might be necessary, please follow instructions in Upgrading section.

• Major releases may contain significant changes including changes to configuration format.

• We might release a new major also when internal implementation details change significantly.

Minor version
• Configuration stays compatible with the previous version, except for undocumented or very obscure options.

• Upgrade should be seamless for users who use modules shipped as part of Knot Resolver distribution.

• Incompatible changes in internal APIs are allowed in minor versions. Users who develop or use custom
modules (i.e. modules not distributed together with Knot Resolver) need to double check their modules for
incompatibilities. Upgrading section should contain hints for module authors.

Patch version
• Everything should be compatible with the previous version.

• API for modules should be stable on best effort basis, i.e. API is very unlikely to break in patch releases.

• Custom modules might need to be recompiled, i.e. ABI compatibility is not guaranteed.

This definition is not applicable to versions older than 5.2.0.

16.2 Knot Resolver 6.0.0 (2023-mm-dd)

16.2.1 Improvements

• Knot Resolver v6 alpha starts

• 6.0.x versions are dedicated to alpha cycle

127

Knot Resolver, Release 6.0.0a1

16.3 Knot Resolver 5.6.0 (2023-01-26)

16.3.1 Security

• avoid excessive TCP reconnections in some cases (!1380) For example, a DNS server that just closes connections
without answer could cause lots of work for the resolver (and itself, too). The number of connections could be
up to around 100 per client’s query.

We thank Xiang Li from NISL Lab, Tsinghua University, and Xuesong Bai and Qifan Zhang from DSP Lab,
UCI.

16.3.2 Improvements

• daemon: feed server selection with more kinds of bad-answer events (!1380)

• cache.max_ttl(): lower the default from six days to one day and apply both limits to the first uncached answer
already (!1323 #127)

• depend on jemalloc, preferably, to improve memory usage (!1353)

• no longer accept DNS messages with trailing data (!1365)

• policy.STUB: avoid applying aggressive DNSSEC denial proofs (!1364)

• policy.STUB: avoid copying +dnssec flag from client to upstream (!1364)

16.3.3 Bugfixes

• policy.DEBUG_IF: don’t print client’s packet unconditionally (!1366)

16.4 Knot Resolver 5.5.3 (2022-09-21)

16.4.1 Security

• fix CPU-expensive DoS by malicious domains - CVE-2022-40188

16.4.2 Improvements

• fix config_tests on macOS (both HW variants)

16.5 Knot Resolver 5.5.2 (2022-08-16)

16.5.1 Improvements

• support libknot 3.2 (!1309)

• priming module: hide failures from the default log level (!1310)

• reduce memory usage in some cases (!1328)

128 Chapter 16. Release notes

Knot Resolver, Release 6.0.0a1

16.5.2 Bugfixes

• daemon/http: improve URI checks to fix some proxies (#746, !1311)

• daemon/tls: fix a double-free for some cases of policy.TLS_FORWARD (!1314)

• hints module: improve parsing comments in hosts files (!1315)

• renumber module: fix renumbering with name matching again (#760, !1334)

16.6 Knot Resolver 5.5.1 (2022-06-14)

16.6.1 Improvements

• daemon/tls: disable TLS resumption via tickets for TLS <= 1.2 (#742, !1295)

• daemon/http: DoH now responds with proper HTTP codes (#728, !1279)

• renumber module: allow rewriting subnet to a single IP (!1302)

• renumber module: allow arbitrary netmask (!1306)

• nameserver selection algorithm: improve IPv6 avoidance if broken (!1298)

16.6.2 Bugfixes

• modules/dns64: fix incorrect packet writes for cached packets (#727, !1275)

• xdp: make it work also with libknot 3.1 (#735, !1276)

• prefill module: fix lockup when starting multiple idle instances (!1285)

• validator: fix some failing negative NSEC proofs (!1294, #738, #443)

16.7 Knot Resolver 5.5.0 (2022-03-15)

16.7.1 Improvements

• extended_errors: module for extended DNS error support, RFC8914 (!1234)

• policy: log policy actions; useful for RPZ debugging (!1239)

• policy: new action policy.IPTRACE for logging request origin (!1239)

• prefill module: prepare for ZONEMD, improve performance (!1225)

• validator: conditionally ignore SHA1 DS, as SHOULD by RFC4509 (!1251)

• lib/resolve: use EDNS padding for outgoing TLS queries (!1254)

• support for PROXYv2 protocol (!1238)

• lib/resolve, policy: new NO_ANSWER flag for not responding to clients (!1257)

16.6. Knot Resolver 5.5.1 (2022-06-14) 129

Knot Resolver, Release 6.0.0a1

16.7.2 Incompatible changes

• libknot >= 3.0.2 is required

16.7.3 Bugfixes

• doh2: fix CORS by adding access-control-allow-origin: * (!1246)

• net: fix listen by interface - add interface suffix to link-local IPv6 (!1253)

• daemon/tls: fix resumption for outgoing TLS (e.g. TLS_FORWARD) (!1261)

• nameserver selection: fix interaction of timeouts with reboots (#722, !1269)

16.8 Knot Resolver 5.4.4 (2022-01-05)

16.8.1 Bugfixes

• fix bad zone cut update in certain cases (e.g. AWS; !1237)

16.9 Knot Resolver 5.4.3 (2021-12-01)

16.9.1 Improvements

• lua: add kres.parse_rdata() to parse RDATA from string to wire format (!1233)

• lua: add policy.domains() for exact domain name matching (!1228)

16.9.2 Bugfixes

• policy.rpz: fix origin detection in files without $ORIGIN (!1215)

• lua: log() works again; broken in 5.4.2 (!1223)

• policy: correctly include EDNS0 previously omitted by some actions (!1230)

• edns_keepalive: module is now properly loaded (!1229, thanks Josh Soref!)

16.10 Knot Resolver 5.4.2 (2021-10-13)

16.10.1 Improvements

• dns64 module: also map the reverse (PTR) subtree (#478, !1201)

• dns64 module: allow disabling based on client address (#368, !1201)

• dns64 module: allow configuring AAAA subnets not allowed in answer (!1201)

• nameserver selection algorithm: improve IPv6 avoidance if broken (!1207)

130 Chapter 16. Release notes

Knot Resolver, Release 6.0.0a1

16.10.2 Bugfixes

• lua: log() output is visible with default log level again (!1208)

• build: fix when knot-dns headers are on non-standard location (!1210)

16.11 Knot Resolver 5.4.1 (2021-08-19)

16.11.1 Improvements

• docker: base image on Debian 11 (!1203)

16.11.2 Bugfixes

• fix build without doh2 support after 5.4.0 (!1197)

• fix policy.DEBUG* logging and -V/–version after 5.4.0 (!1199)

• doh2: ensure memory from unsent streams is freed (!1202)

16.12 Knot Resolver 5.4.0 (2021-07-29)

16.12.1 Improvements

• fine grained logging and syslog support (!1181)

• expose HTTP headers for processing DoH requests (!1165)

• improve assertion mechanism for debugging (!1146)

• support apkg tool for packaging workflow (!1178)

• support Knot DNS 3.1 (!1192, !1194)

16.12.2 Bugfixes

• trust_anchors.set_insecure: improve precision (#673, !1177)

• plug memory leaks related to TCP (!1182)

• policy.FLAGS: fix not applying properly in edge cases (!1179)

• fix a crash with older libuv inside timer processing (!1195)

16.11. Knot Resolver 5.4.1 (2021-08-19) 131

Knot Resolver, Release 6.0.0a1

16.12.3 Incompatible changes

• see upgrading guide: https://knot-resolver.readthedocs.io/en/stable/upgrading.html#to-5-4

• legacy DoH implementation configuration in net.listen() was renamed from kind=”doh” to kind=”doh_legacy”
(!1180)

16.13 Knot Resolver 5.3.2 (2021-05-05)

16.13.1 Security

• validator: fix 5.3.1 regression on over-limit NSEC3 edge case (!1169) Assertion might be triggered by
query/answer, potentially DoS. CVE-2021-40083 was later assigned.

16.13.2 Improvements

• cache: improve handling write errors from LMDB (!1159)

• doh2: improve handling of stream errors (!1164)

16.13.3 Bugfixes

• dnstap module: fix repeated configuration (!1168)

• validator: fix SERVFAIL for some rare dynamic proofs (!1166)

• fix SIGBUS on uncommon ARM machines (unaligned access; !1167, #426)

• cache: better resilience on abnormal termination/restarts (!1172)

• doh2: fix memleak on stream write failures (!1161)

16.14 Knot Resolver 5.3.1 (2021-03-31)

16.14.1 Improvements

• policy.STUB: try to avoid TCP (compared to 5.3.0; !1155)

• validator: downgrade NSEC3 records with too many iterations (>150; !1160)

• additional improvements to nameserver selection algorithm (!1154, !1150)

132 Chapter 16. Release notes

https://knot-resolver.readthedocs.io/en/stable/upgrading.html#to-5-4

Knot Resolver, Release 6.0.0a1

16.14.2 Bugfixes

• dnstap module: don’t break request resolution on dnstap errors (!1147)

• cache garbage collector: fix crashes introduced in 5.3.0 (!1153)

• policy.TLS_FORWARD: better avoid dead addresses (#671, !1156)

16.15 Knot Resolver 5.3.0 (2021-02-25)

16.15.1 Improvements

• more consistency in using parent-side records for NS addresses (!1097)

• better algorithm for choosing nameservers (!1030, !1126, !1140, !1141, !1143)

• daf module: add daf.clear() (!1114)

• dnstap module: more features and don’t log internal requests (!1103)

• dnstap module: include in upstream packages and Docker image (!1110, !1118)

• randomize record order by default, i.e. reorder_RR(true) (!1124)

• prometheus module: transform graphite tags into prometheus labels (!1109)

• avoid excessive logging of UDP replies with sendmmsg (!1138)

16.15.2 Bugfixes

• view: fail config if bad subnet is specified (!1112)

• doh2: fix memory leak (!1117)

• policy.ANSWER: minor fixes, mainly around NODATA answers (!1129)

• http, watchdog modules: fix stability problems (!1136)

16.15.3 Incompatible changes

• dnstap module: log_responses option gets nested under client; see new docs for config example (!1103)

• libknot >= 2.9 is required

16.16 Knot Resolver 5.2.1 (2020-12-09)

16.16.1 Improvements

• doh2: send Cache-Control header with TTL (#617, !1095)

16.15. Knot Resolver 5.3.0 (2021-02-25) 133

Knot Resolver, Release 6.0.0a1

16.16.2 Bugfixes

• fix map() command on 32-bit platforms; regressed in 5.2.0 (!1093)

• doh2: restrict endpoints to doh and dns-query (#636, !1104)

• renumber: map to correct subnet when using multiple rules (!1107)

16.17 Knot Resolver 5.2.0 (2020-11-11)

16.17.1 Improvements

• doh2: add native C module for DNS-over-HTTPS (#600, !997)

• xdp: add server-side XDP support for higher UDP performance (#533, !1083)

• lower default EDNS buffer size to 1232 bytes (#538, #300, !920); see https://www.dnsflagday.net/2020/

• net: split the EDNS buffer size into upstream and downstream (!1026)

• lua-http doh: answer to /dns-query endpoint as well as /doh (!1069)

• improve resiliency against UDP fragmentation attacks (disable PMTUD) (!1061)

• ta_update: warn if there are differences between statically configured keys and upstream (#251, !1051)

• human readable output in interactive mode was improved

• doc: generate info page (!1079)

• packaging: improve sysusers and tmpfiles support (!1080)

16.17.2 Bugfixes

• avoid an assert() error in stash_rrset() (!1072)

• fix emergency cache locking bug introduced in 5.1.3 (!1078)

• migrate map() command to control sockets; fix systemd integration (!1000)

• fix crash when sending back errors over control socket (!1000)

• fix SERVFAIL while processing forwarded CNAME to a sibling zone (#614, !1070)

16.17.3 Incompatible changes

• see upgrading guide: https://knot-resolver.readthedocs.io/en/stable/upgrading.html#to-5-2

• minor changes in module API

• control socket API commands have to be terminated by “n”

• graphite: default prefix now contains instance identifier (!1000)

• build: meson >= 0.49 is required (!1082)

134 Chapter 16. Release notes

https://www.dnsflagday.net/2020/
https://knot-resolver.readthedocs.io/en/stable/upgrading.html#to-5-2

Knot Resolver, Release 6.0.0a1

16.18 Knot Resolver 5.1.3 (2020-09-08)

16.18.1 Improvements

• capabilities are no longer constrained when running as root (!1012)

• cache: add percentage usage to cache.stats() (#580, !1025)

• cache: add number of cache entries to cache.stats() (#510, !1028)

• aarch64 support again, as some systems still didn’t work (!1033)

• support building against Knot DNS 3.0 (!1053)

16.18.2 Bugfixes

• tls: fix compilation to support net.tls_sticket_secret() (!1021)

• validator: ignore bogus RRSIGs present in insecure domains (!1022, #587)

• build if libsystemd version isn’t detected as integer (#592, !1029)

• validator: more robust reaction on missing RRSIGs (#390, !1020)

• ta_update module: fix broken RFC5011 rollover (!1035)

• garbage collector: avoid keeping multiple copies of cache (!1042)

16.19 Knot Resolver 5.1.2 (2020-07-01)

16.19.1 Bugfixes

• hints module: NODATA answers also for non-address queries (!1005)

• tls: send alert to peer if handshake fails (!1007)

• cache: fix interaction between LMDB locks and preallocation (!1013)

• cache garbage collector: fix flushing of messages to logs (!1009)

• cache garbage collector: fix insufficient GC on 32-bit systems (!1009)

• graphite module: do not block resolver on TCP failures (!1014)

• policy.rpz various fixes (!1016): $ORIGIN issues, precision of warnings, allow answering with multi-RR sets

16.20 Knot Resolver 5.1.1 (2020-05-19)

16.20.1 Security

• fix CVE-2020-12667: mitigation for NXNSAttack DNS protocol vulnerability

16.18. Knot Resolver 5.1.3 (2020-09-08) 135

Knot Resolver, Release 6.0.0a1

16.20.2 Bugfixes

• control sockets: recognize newline as command boundary

16.21 Knot Resolver 5.1.0 (2020-04-29)

16.21.1 Improvements

• cache garbage collector: reduce filesystem operations when idle (!946)

• policy.DEBUG_ALWAYS and policy.DEBUG_IF for limited verbose logging (!957)

• daemon: improve TCP query latency under heavy TCP load (!968)

• add policy.ANSWER action (!964, #192)

• policy.rpz support fake A/AAAA (!964, #194)

16.21.2 Bugfixes

• cache: missing filesystem support for pre-allocation is no longer fatal (#549)

• lua: policy.rpz() no longer watches the file when watch is set to false (!954)

• fix a strict aliasing problem that might’ve lead to “miscompilation” (!962)

• fix handling of DNAMEs, especially signed ones (#234, !965)

• lua resolve(): correctly include EDNS0 in the virtual packet (!963) Custom modules might have been confused
by that.

• do not leak bogus data into SERVFAIL answers (#396)

• improve random Lua number generator initialization (!979)

• cache: fix CNAME caching when validation is disabled (#472, !974)

• cache: fix CNAME caching in policy.STUB mode (!974)

• prefill: fix crash caused by race condition with resolver startup (!983)

• webmgmt: use javascript scheme detection for websockets’ protocol (#546)

• daf module: fix del(), deny(), drop(), tc(), pass() functions (#553, !966)

• policy and daf modules: expose initial query when evaluating postrules (#556)

• cache: fix some cases of caching answers over 4 KiB (!976)

• docs: support sphinx 3.0.0+ (!978)

136 Chapter 16. Release notes

Knot Resolver, Release 6.0.0a1

16.21.3 Incompatible changes

• minor changes in module API; see upgrading guide: https://knot-resolver.readthedocs.io/en/stable/upgrading.
html

16.22 Knot Resolver 5.0.1 (2020-02-05)

16.22.1 Bugfixes

• systemd: use correct cache location for garbage collector (#543)

16.22.2 Improvements

• cache: add cache.fssize() lua function to configure entire free disk space on dedicated cache partition (#524,
!932)

16.23 Knot Resolver 5.0.0 (2020-01-27)

16.23.1 Incompatible changes

• see upgrading guide: https://knot-resolver.readthedocs.io/en/stable/upgrading.html

• systemd sockets are no longer supported (#485)

• net.listen() throws an error if it fails to bind; use freebind option if needed

• control socket location has changed (!922)

• -f/–forks is deprecated (#529, !919)

16.23.2 Improvements

• logging: control-socket commands don’t log unless –verbose (#528)

• use SO_REUSEPORT_LB if available (FreeBSD 12.0+)

• lua: remove dependency on lua-socket and lua-sec, used lua-http and cqueues (#512, #521, !894)

• lua: remove dependency on lua-filesystem (#520, !912)

• net.listen(): allow binding to non-local address with freebind option (!898)

• cache: pre-allocate the file to avoid SIGBUS later (not macOS; !917, #525)

• lua: be stricter around nonsense returned from modules (!901)

• user documentation was reorganized and extended (!900, !867)

• multiple config files can be used with –config/-c option (!909)

• lua: stop trying to tweak lua’s GC (!201)

• systemd: add SYSTEMD_INSTANCE env variable to identify different instances (!906)

16.22. Knot Resolver 5.0.1 (2020-02-05) 137

https://knot-resolver.readthedocs.io/en/stable/upgrading.html
https://knot-resolver.readthedocs.io/en/stable/upgrading.html
https://knot-resolver.readthedocs.io/en/stable/upgrading.html

Knot Resolver, Release 6.0.0a1

16.23.3 Bugfixes

• correctly use EDNS(0) padding in failed answers (!921)

• policy and daf modules: fix postrules and reroute rules (!901)

• renumber module: don’t accidentally zero-out request’s .state (!901)

16.24 Knot Resolver 4.3.0 (2019-12-04)

16.24.1 Security - CVE-2019-19331

• fix speed of processing large RRsets (DoS, #518)

• improve CNAME chain length accounting (DoS, !899)

16.24.2 Bugfixes

• http module: use SO_REUSEPORT (!879)

• systemd: kresd@.service now properly starts after network interfaces have been configured with IP addresses
after reboot (!884)

• sendmmsg: improve reliability (!704)

• cache: fix crash on insertion via lua for NS and CNAME (!889)

• rpm package: move root.keys to /var/lib/knot-resolver (#513, !888)

16.24.3 Improvements

• increase file-descriptor count limit to maximum allowed value (hard limit; !876)

• watchdog module: support testing a DNS query (and switch C -> lua; !878, !881)

• performance: use sendmmsg syscall towards clients by default (!877)

• performance: avoid excessive getsockname() syscalls (!854)

• performance: lua-related improvements (!874)

• daemon now attempts to drop all capabilities (!896)

• reduce CNAME chain length limit - now <= 12 (!899)

16.25 Knot Resolver 4.2.2 (2019-10-07)

16.25.1 Bugfixes

• lua bindings: fix a 4.2.1 regression on 32-bit systems (#514) which also fixes libknot 2.9 support on all systems

138 Chapter 16. Release notes

Knot Resolver, Release 6.0.0a1

16.26 Knot Resolver 4.2.1 (2019-09-26)

16.26.1 Bugfixes

• rebinding module: fix handling some requests, respect ALLOW_LOCAL flag

• fix incorrect SERVFAIL on cached bogus answer for +cd request (!860) (regression since 4.1.0 release, in less
common cases)

• prefill module: allow a different module-loading style (#506)

• validation: trim TTLs by RRSIG’s expiration and original TTL (#319, #504)

• NS choice algorithm: fix a regression since 4.0.0 (#497, !868)

• policy: special domains home.arpa. and local. get NXDOMAIN (!855)

16.26.2 Improvements

• add compatibility with (future) libknot 2.9

16.27 Knot Resolver 4.2.0 (2019-08-05)

16.27.1 Improvements

• queries without RD bit set are REFUSED by default (!838)

• support forwarding to multiple targets (!825)

16.27.2 Bugfixes

• tls_client: fix issue with TLS session resumption (#489)

• rebinding module: fix another false-positive assertion case (!851)

16.27.3 Module API changes

• kr_request::add_selected is now really put into answer, instead of the “duplicate” ::additional field (#490)

16.28 Knot Resolver 4.1.0 (2019-07-10)

16.28.1 Security

• fix CVE-2019-10190: do not pass bogus negative answer to client (!827)

• fix CVE-2019-10191: do not cache negative answer with forged QNAME+QTYPE (!839)

16.26. Knot Resolver 4.2.1 (2019-09-26) 139

Knot Resolver, Release 6.0.0a1

16.28.2 Improvements

• new cache garbage collector is available and enabled by default (#257) This improves cache efficiency on big
installations.

• DNS-over-HTTPS: unknown HTTP parameters are ignored to improve compatibility with non-standard clients
(!832)

• DNS-over-HTTPS: answers include access-control-allow-origin: * (!823) which allows JavaScript to use DoH
endpoint.

• http module: support named AF_UNIX stream sockets (again)

• aggressive caching is disabled on minimal NSEC* ranges (!826) This improves cache effectivity with DNSSEC
black lies and also accidentally works around bug in proofs-of-nonexistence from F5 BIG-IP load-balancers.

• aarch64 support, even kernels with ARM64_VA_BITS >= 48 (#216, !797) This is done by working around a
LuaJIT incompatibility. Please report bugs.

• lua tables for C modules are more strict by default, e.g. nsid.foo will throw an error instead of returning nil (!797)

• systemd: basic watchdog is now available and enabled by default (#275)

16.28.3 Bugfixes

• TCP to upstream: fix unlikely case of sending out wrong message length (!816)

• http module: fix problems around maintenance of ephemeral certs (!819)

• http module: also send intermediate TLS certificate to clients, if available and luaossl >= 20181207 (!819)

• send EDNS with SERVFAILs, e.g. on validation failures (#180, !827)

• prefill module: avoid crash on empty zone file (#474, !840)

• rebinding module: avoid excessive iteration on blocked attempts (!842)

• rebinding module: fix crash caused by race condition (!842)

• rebinding module: log each blocked query only in verbose mode (!842)

• cache: automatically clear stale reader locks (!844)

16.28.4 Module API changes

• lua modules may omit casting parameters of layer functions (!797)

16.29 Knot Resolver 4.0.0 (2019-04-18)

16.29.1 Incompatible changes

• see upgrading guide: https://knot-resolver.readthedocs.io/en/stable/upgrading.html

• configuration: trust_anchors aliases .file, .config() and .negative were removed (!788)

• configuration: trust_anchors.keyfile_default is no longer accessible (!788)

• daemon: -k/–keyfile and -K/–keyfile-ro options were removed

• meson build system is now used for builds (!771)

140 Chapter 16. Release notes

https://knot-resolver.readthedocs.io/en/stable/upgrading.html

Knot Resolver, Release 6.0.0a1

• build with embedded LMBD is no longer supported

• default modules dir location has changed

• DNSSEC is enabled by default

• upstream packages for Debian now require systemd

• libknot >= 2.8 is required

• net.list() output format changed (#448)

• net.listen() reports error when address-port pair is in use

• bind to DNS-over-TLS port by default (!792)

• stop versioning libkres library

• default port for web management and APIs changed to 8453

16.29.2 Improvements

• policy.TLS_FORWARD: if hostname is configured, send it on wire (!762)

• hints module: allow configuring the TTL and change default from 0 to 5s

• policy module: policy.rpz() will watch the file for changes by default

• packaging: lua cqueues added to default dependencies where available

• systemd: service is no longer auto-restarted on configuration errors

• always send DO+CD flags upstream, even in insecure zones (#153)

• cache.stats() output is completely new; see docs (!775)

• improve usability of table_print() (!790, !801)

• add DNS-over-HTTPS support (#280)

• docker image supports and exposes DNS-over-HTTPS

16.29.3 Bugfixes

• predict module: load stats module if config didn’t specify period (!755)

• trust_anchors: don’t do 5011-style updates on anchors from files that were loaded as unmanaged trust anchors
(!753)

• trust_anchors.add(): include these TAs in .summary() (!753)

• policy module: support ‘#’ for separating port numbers, for consistency

• fix startup on macOS+BSD when </dev/null and cqueues installed

• policy.RPZ: log problems from zone-file level of parser as well (#453)

• fix flushing of messages to logs in some cases (notably systemd) (!781)

• fix fallback when SERVFAIL or REFUSED is received from upstream (!784)

• fix crash when dealing with unknown TA key algorithm (#449)

• go insecure due to algorithm support even if DNSKEY is NODATA (!798)

• fix mac addresses in the output of net.interfaces() command (!804)

16.29. Knot Resolver 4.0.0 (2019-04-18) 141

Knot Resolver, Release 6.0.0a1

• http module: fix too early renewal of ephemeral certificates (!808)

16.29.4 Module API changes

• kr_straddr_split() changed API a bit (compiler will catch that)

• C modules defining *_layer or *_props symbols need to change a bit See the upgrading guide for details. It’s
detected on module load.

16.30 Knot Resolver 3.2.1 (2019-01-10)

16.30.1 Bugfixes

• trust_anchors: respect validity time range during TA bootstrap (!748)

• fix TLS rehandshake handling (!739)

• make TLS_FORWARD compatible with GnuTLS 3.3 (!741)

• special thanks to Grigorii Demidov for his long-term work on Knot Resolver!

16.30.2 Improvements

• improve handling of timed out outgoing TCP connections (!734)

• trust_anchors: check syntax of public keys in DNSKEY RRs (!748)

• validator: clarify message about bogus non-authoritative data (!735)

• dnssec validation failures contain more verbose reasoning (!735)

• new function trust_anchors.summary() describes state of DNSSEC TAs (!737), and logs new state of trust anchors
after start up and automatic changes

• trust anchors: refuse revoked DNSKEY even if specified explicitly, and downgrade missing the SEP bit to a
warning

16.31 Knot Resolver 3.2.0 (2018-12-17)

16.31.1 New features

• module edns_keepalive to implement server side of RFC 7828 (#408)

• module nsid to implement server side of RFC 5001 (#289)

• module bogus_log provides .frequent() table (!629, credit Ulrich Wisser)

• module stats collects flags from answer messages (!629, credit Ulrich Wisser)

• module view supports multiple rules with identical address/TSIG specification and keeps trying rules until a
“non-chain” action is executed (!678)

• module experimental_dot_auth implements an DNS-over-TLS to auth protocol (!711, credit Manu Bretelle)

• net.bpf bindings allow advanced users to use eBPF socket filters

142 Chapter 16. Release notes

Knot Resolver, Release 6.0.0a1

16.31.2 Bugfixes

• http module: only run prometheus in parent process if using –forks=N, as the submodule collects metrics from
all sub-processes as well.

• TLS fixes for corner cases (!700, !714, !716, !721, !728)

• fix build with -DNOVERBOSELOG (#424)

• policy.{FORWARD,TLS_FORWARD,STUB}: respect net.ipv{4,6} setting (!710)

• avoid SERVFAILs due to certain kind of NS dependency cycles, again (#374) this time seen as ‘circular depen-
dency’ in verbose logs

• policy and view modules do not overwrite result finished requests (!678)

16.31.3 Improvements

• Dockerfile: rework, basing on Debian instead of Alpine

• policy.{FORWARD,TLS_FORWARD,STUB}: give advantage to IPv6 when choosing whom to ask, just as for
iteration

• use pseudo-randomness from gnutls instead of internal ISAAC (#233)

• tune the way we deal with non-responsive servers (!716, !723)

• documentation clarifies interaction between policy and view modules (!678, !730)

16.31.4 Module API changes

• new layer is added: answer_finalize

• kr_request keeps ::qsource.packet beyond the begin layer

• kr_request::qsource.tcp renamed to ::qsource.flags.tcp

• kr_request::has_tls renamed to ::qsource.flags.tls

• kr_zonecut_add(), kr_zonecut_del() and kr_nsrep_sort() changed parameters slightly

16.32 Knot Resolver 3.1.0 (2018-11-02)

16.32.1 Incompatible changes

• hints.use_nodata(true) by default; that’s what most users want

• libknot >= 2.7.2 is required

16.32. Knot Resolver 3.1.0 (2018-11-02) 143

Knot Resolver, Release 6.0.0a1

16.32.2 Improvements

• cache: handle out-of-space SIGBUS slightly better (#197)

• daemon: improve TCP timeout handling (!686)

16.32.3 Bugfixes

• cache.clear(‘name’): fix some edge cases in API (#401)

• fix error handling from TLS writes (!669)

• avoid SERVFAILs due to certain kind of NS dependency cycles (#374)

16.33 Knot Resolver 3.0.0 (2018-08-20)

16.33.1 Incompatible changes

• cache: fail lua operations if cache isn’t open yet (!639) By default cache is opened after reading the configu-
ration, and older versions were silently ignoring cache operations. Valid configuration must open cache using
cache.open() or cache.size = before executing cache operations like cache.clear().

• libknot >= 2.7.1 is required, which brings also larger API changes

• in case you wrote custom Lua modules, please consult https://knot-resolver.readthedocs.io/en/latest/lib.html#
incompatible-changes-since-3-0-0

• in case you wrote custom C modules, please see compile against Knot DNS 2.7 and adjust your module according
to messages from C compiler

• DNS cookie module (RFC 7873) is not available in this release, it will be later reworked to reflect development
in IEFT dnsop working group

• version module was permanently removed because it was not really used by users; if you want to receive noti-
fications about new releases please subscribe to https://lists.nic.cz/postorius/lists/knot-resolver-announce.lists.
nic.cz/

16.33.2 Bugfixes

• fix multi-process race condition in trust anchor maintenance (!643)

• ta_sentinel: also consider static trust anchors not managed via RFC 5011

16.33.3 Improvements

• reorder_RR() implementation is brought back

• bring in performance improvements provided by libknot 2.7

• cache.clear() has a new, more powerful API

• cache documentation was improved

• old name “Knot DNS Resolver” is replaced by unambiguous “Knot Resolver” to prevent confusion with “Knot
DNS” authoritative server

144 Chapter 16. Release notes

https://knot-resolver.readthedocs.io/en/latest/lib.html#incompatible-changes-since-3-0-0
https://knot-resolver.readthedocs.io/en/latest/lib.html#incompatible-changes-since-3-0-0
https://lists.nic.cz/postorius/lists/knot-resolver-announce.lists.nic.cz/
https://lists.nic.cz/postorius/lists/knot-resolver-announce.lists.nic.cz/

Knot Resolver, Release 6.0.0a1

16.34 Knot Resolver 2.4.1 (2018-08-02)

16.34.1 Security

• fix CVE-2018-10920: Improper input validation bug in DNS resolver component (security!7, security!9)

16.34.2 Bugfixes

• cache: fix TTL overflow in packet due to min_ttl (#388, security!8)

• TLS session resumption: avoid bad scheduling of rotation (#385)

• HTTP module: fix a regression in 2.4.0 which broke custom certs (!632)

• cache: NSEC3 negative cache even without NS record (#384) This fixes lower hit rate in NSEC3 zones (since
2.4.0).

• minor TCP and TLS fixes (!623, !624, !626)

16.35 Knot Resolver 2.4.0 (2018-07-03)

16.35.1 Incompatible changes

• minimal libknot version is now 2.6.7 to pull in latest fixes (#366)

16.35.2 Security

• fix a rare case of zones incorrectly downgraded to insecure status (!576)

16.35.3 New features

• TLS session resumption (RFC 5077), both server and client (!585, #105) (disabled when compiling with gnutls
< 3.5)

• TLS_FORWARD policy uses system CA certificate store by default (!568)

• aggressive caching for NSEC3 zones (!600)

• optional protection from DNS Rebinding attack (module rebinding, !608)

• module bogus_log to log DNSSEC bogus queries without verbose logging (!613)

16.35.4 Bugfixes

• prefill: fix ability to read certificate bundle (!578)

• avoid turning off qname minimization in some cases, e.g. co.uk. (#339)

• fix validation of explicit wildcard queries (#274)

• dns64 module: more properties from the RFC implemented (incl. bug #375)

16.34. Knot Resolver 2.4.1 (2018-08-02) 145

Knot Resolver, Release 6.0.0a1

16.35.5 Improvements

• systemd: multiple enabled kresd instances can now be started using kresd.target

• ta_sentinel: switch to version 14 of the RFC draft (!596)

• support for glibc systems with a non-Linux kernel (!588)

• support per-request variables for Lua modules (!533)

• support custom HTTP endpoints for Lua modules (!527)

16.36 Knot Resolver 2.3.0 (2018-04-23)

16.36.1 Security

• fix CVE-2018-1110: denial of service triggered by malformed DNS messages (!550, !558, security!2, security!4)

• increase resilience against slow lorris attack (security!5)

16.36.2 New features

• new policy.REFUSE to reply REFUSED to clients

16.36.3 Bugfixes

• validation: fix SERVFAIL in case of CNAME to NXDOMAIN in a single zone (!538)

• validation: fix SERVFAIL for DS . query (!544)

• lib/resolve: don’t send unnecessary queries to parent zone (!513)

• iterate: fix validation for zones where parent and child share NS (!543)

• TLS: improve error handling and documentation (!536, !555, !559)

16.36.4 Improvements

• prefill: new module to periodically import root zone into cache (replacement for RFC 7706, !511)

• network_listen_fd: always create end point for supervisor supplied file descriptor

• use CPPFLAGS build environment variable if set (!547)

16.37 Knot Resolver 2.2.0 (2018-03-28)

16.37.1 New features

• cache server unavailability to prevent flooding unreachable servers (Please note that caching algorithm needs
further optimization and will change in further versions but we need to gather operational experience first.)

146 Chapter 16. Release notes

Knot Resolver, Release 6.0.0a1

16.37.2 Bugfixes

• don’t magically -D_FORTIFY_SOURCE=2 in some cases

• allow large responses for outbound over TCP

• fix crash with RR sets with over 255 records

16.38 Knot Resolver 2.1.1 (2018-02-23)

16.38.1 Bugfixes

• when iterating, avoid unnecessary queries for NS in insecure parent. This problem worsened in 2.0.0. (#246)

• prevent UDP packet leaks when using TLS forwarding

• fix the hints module also on some other systems, e.g. Gentoo.

16.39 Knot Resolver 2.1.0 (2018-02-16)

16.39.1 Incompatible changes

• stats: remove tracking of expiring records (predict uses another way)

• systemd: re-use a single kresd.socket and kresd-tls.socket

• ta_sentinel: implement protocol draft-ietf-dnsop-kskroll-sentinel-01 (our draft-ietf-dnsop-kskroll-sentinel-00
implementation had inverted logic)

• libknot: require version 2.6.4 or newer to get bugfixes for DNS-over-TLS

16.39.2 Bugfixes

• detect_time_jump module: don’t clear cache on suspend-resume (#284)

• stats module: fix stats.list() returning nothing, regressed in 2.0.0

• policy.TLS_FORWARD: refusal when configuring with multiple IPs (#306)

• cache: fix broken refresh of insecure records that were about to expire

• fix the hints module on some systems, e.g. Fedora (came back on 2.0.0)

• build with older gnutls (conditionally disable features)

• fix the predict module to work with insecure records & cleanup code

16.38. Knot Resolver 2.1.1 (2018-02-23) 147

Knot Resolver, Release 6.0.0a1

16.40 Knot Resolver 2.0.0 (2018-01-31)

16.40.1 Incompatible changes

• systemd: change unit files to allow running multiple instances, deployments with single instance now must use
kresd@1.service instead of kresd.service; see kresd.systemd(7) for details

• systemd: the directory for cache is now /var/cache/knot-resolver

• unify default directory and user to knot-resolver

• directory with trust anchor file specified by -k option must be writeable

• policy module is now loaded by default to enforce RFC 6761; see documentation for policy.PASS if you use
locally-served DNS zones

• drop support for alternative cache backends memcached, redis, and for Lua bindings for some specific cache
operations

• REORDER_RR option is not implemented (temporarily)

16.40.2 New features

• aggressive caching of validated records (RFC 8198) for NSEC zones; thanks to ICANN for sponsoring this work.

• forwarding over TLS, authenticated by SPKI pin or certificate. policy.TLS_FORWARD pipelines queries out-of-
order over shared TLS connection Beware: Some resolvers do not support out-of-order query processing. TLS
forwarding to such resolvers will lead to slower resolution or failures.

• trust anchors: you may specify a read-only file via -K or –keyfile-ro

• trust anchors: at build-time you may set KEYFILE_DEFAULT (read-only)

• ta_sentinel module implements draft ietf-dnsop-kskroll-sentinel-00, enabled by default

• serve_stale module is prototype, subject to change

• extended API for Lua modules

16.40.3 Bugfixes

• fix build on osx - regressed in 1.5.3 (different linker option name)

16.41 Knot Resolver 1.5.3 (2018-01-23)

16.41.1 Bugfixes

• fix the hints module on some systems, e.g. Fedora. Symptom: undefined symbol: engine_hint_root_file

148 Chapter 16. Release notes

Knot Resolver, Release 6.0.0a1

16.42 Knot Resolver 1.5.2 (2018-01-22)

16.42.1 Security

• fix CVE-2018-1000002: insufficient DNSSEC validation, allowing attackers to deny existence of some data by
forging packets. Some combinations pointed out in RFC 6840 sections 4.1 and 4.3 were not taken into account.

16.42.2 Bugfixes

• memcached: fix fallout from module rename in 1.5.1

16.43 Knot Resolver 1.5.1 (2017-12-12)

16.43.1 Incompatible changes

• script supervisor.py was removed, please migrate to a real process manager

• module ketcd was renamed to etcd for consistency

• module kmemcached was renamed to memcached for consistency

16.43.2 Bugfixes

• fix SIGPIPE crashes (#271)

• tests: work around out-of-space for platforms with larger memory pages

• lua: fix mistakes in bindings affecting 1.4.0 and 1.5.0 (and 1.99.1-alpha), potentially causing problems in dns64
and workarounds modules

• predict module: various fixes (!399)

16.43.3 Improvements

• add priming module to implement RFC 8109, enabled by default (#220)

• add modules helping with system time problems, enabled by default; for details see documentation of de-
tect_time_skew and detect_time_jump

16.44 Knot Resolver 1.5.0 (2017-11-02)

16.44.1 Bugfixes

• fix loading modules on Darwin

16.42. Knot Resolver 1.5.2 (2018-01-22) 149

Knot Resolver, Release 6.0.0a1

16.44.2 Improvements

• new module ta_signal_query supporting Signaling Trust Anchor Knowledge using Keytag Query (RFC 8145
section 5); it is enabled by default

• attempt validation for more records but require it for fewer of them (e.g. avoids SERVFAIL when server adds
extra records but omits RRSIGs)

16.45 Knot Resolver 1.99.1-alpha (2017-10-26)

This is an experimental release meant for testing aggressive caching. It contains some regressions and might (theoret-
ically) be even vulnerable. The current focus is to minimize queries into the root zone.

16.45.1 Improvements

• negative answers from validated NSEC (NXDOMAIN, NODATA)

• verbose log is very chatty around cache operations (maybe too much)

16.45.2 Regressions

• dropped support for alternative cache backends and for some specific cache operations

• caching doesn’t yet work for various cases:
– negative answers without NSEC (i.e. with NSEC3 or insecure)

∗ +cd queries (needs other internal changes)

∗ positive wildcard answers

• spurious SERVFAIL on specific combinations of cached records, printing:
<= bad keys, broken trust chain

• make check

• a few Deckard tests are broken, probably due to some problems above

• also unknown ones?

16.46 Knot Resolver 1.4.0 (2017-09-22)

16.46.1 Incompatible changes

• lua: query flag-sets are no longer represented as plain integers. kres.query.* no longer works, and kr_query_t
lost trivial methods ‘hasflag’ and ‘resolved’. You can instead write code like qry.flags.NO_0X20 = true.

150 Chapter 16. Release notes

Knot Resolver, Release 6.0.0a1

16.46.2 Bugfixes

• fix exiting one of multiple forks (#150)

• cache: change the way of using LMDB transactions. That in particular fixes some cases of using too much space
with multiple kresd forks (#240).

16.46.3 Improvements

• policy.suffix: update the aho-corasick code (#200)

• root hints are now loaded from a zonefile; exposed as hints.root_file(). You can override the path by defining
ROOTHINTS during compilation.

• policy.FORWARD: work around resolvers adding unsigned NS records (#248)

• reduce unneeded records previously put into authority in wildcarded answers

16.47 Knot Resolver 1.3.3 (2017-08-09)

16.47.1 Security

• Fix a critical DNSSEC flaw. Signatures might be accepted as valid even if the signed data was not in bailiwick
of the DNSKEY used to sign it, assuming the trust chain to that DNSKEY was valid.

16.47.2 Bugfixes

• iterate: skip RRSIGs with bad label count instead of immediate SERVFAIL

• utils: fix possible incorrect seeding of the random generator

• modules/http: fix compatibility with the Prometheus text format

16.47.3 Improvements

• policy: implement remaining special-use domain names from RFC6761 (#205), and make these rules apply only
if no other non-chain rule applies

16.48 Knot Resolver 1.3.2 (2017-07-28)

16.48.1 Security

• fix possible opportunities to use insecure data from cache as keys for validation

16.47. Knot Resolver 1.3.3 (2017-08-09) 151

Knot Resolver, Release 6.0.0a1

16.48.2 Bugfixes

• daemon: check existence of config file even if rundir isn’t specified

• policy.FORWARD and STUB: use RTT tracking to choose servers (#125, #208)

• dns64: fix CNAME problems (#203) It still won’t work with policy.STUB.

• hints: better interpretation of hosts-like files (#204)
also, error out if a bad entry is encountered in the file

• dnssec: handle unknown DNSKEY/DS algorithms (#210)

• predict: fix the module, broken since 1.2.0 (#154)

16.48.3 Improvements

• embedded LMDB fallback: update 0.9.18 -> 0.9.21

16.49 Knot Resolver 1.3.1 (2017-06-23)

16.49.1 Bugfixes

• modules/http: fix finding the static files (bug from 1.3.0)

• policy.FORWARD: fix some cases of CNAMEs obstructing search for zone cuts

16.50 Knot Resolver 1.3.0 (2017-06-13)

16.50.1 Security

• Refactor handling of AD flag and security status of resource records. In some cases it was possible for secure
domains to get cached as insecure, even for a TLD, leading to disabled validation. It also fixes answering with
non-authoritative data about nameservers.

16.50.2 Improvements

• major feature: support for forwarding with validation (#112). The old policy.FORWARD action now does that;
the previous non-validating mode is still available as policy.STUB except that also uses caching (#122).

• command line: specify ports via @ but still support # for compatibility

• policy: recognize 100.64.0.0/10 as local addresses

• layer/iterate: do retry repeatedly if REFUSED, as we can’t yet easily retry with other NSs while avoiding retrying
with those who REFUSED

• modules: allow changing the directory where modules are found, and do not search the default library path
anymore.

152 Chapter 16. Release notes

Knot Resolver, Release 6.0.0a1

16.50.3 Bugfixes

• validate: fix insufficient caching for some cases (relatively rare)

• avoid putting “duplicate” record-sets into the answer (#198)

16.51 Knot Resolver 1.2.6 (2017-04-24)

16.51.1 Security

• dnssec: don’t set AD flag for NODATA answers if wildcard non-existence is not guaranteed due to opt-out in
NSEC3

16.51.2 Improvements

• layer/iterate: don’t retry repeatedly if REFUSED

16.51.3 Bugfixes

• lib/nsrep: revert some changes to NS reputation tracking that caused severe problems to some users of 1.2.5
(#178 and #179)

• dnssec: fix verification of wildcarded non-singleton RRsets

• dnssec: allow wildcards located directly under the root

• layer/rrcache: avoid putting answer records into queries in some cases

16.52 Knot Resolver 1.2.5 (2017-04-05)

16.52.1 Security

• layer/validate: clear AD if closest encloser proof has opt-outed NSEC3 (#169)

• layer/validate: check if NSEC3 records in wildcard expansion proof has an opt-out

• dnssec/nsec: missed wildcard no-data answers validation has been implemented

16.52.2 Improvements

• modules/dnstap: a DNSTAP support module (Contributed by Vicky Shrestha)

• modules/workarounds: a module adding workarounds for known DNS protocol violators

• layer/iterate: fix logging of glue addresses

• kr_bitcmp: allow bits=0 and consequently 0.0.0.0/0 matches in view and renumber modules.

• modules/padding: Improve default padding of responses (Contributed by Daniel Kahn Gillmor)

• New kresc client utility (experimental; don’t rely on the API yet)

16.51. Knot Resolver 1.2.6 (2017-04-24) 153

Knot Resolver, Release 6.0.0a1

16.52.3 Bugfixes

• trust anchors: Improve trust anchors storage format (#167)

• trust anchors: support non-root TAs, one domain per file

• policy.DENY: set AA flag and clear AD flag

• lib/resolve: avoid unnecessary DS queries

• lib/nsrep: don’t treat servers with NOIP4 + NOIP6 flags as timed out

• layer/iterate: During packet classification (answer vs. referral) don’t analyze AUTHORITY section in authorita-
tive answer if ANSWER section contains records that have been requested

16.53 Knot Resolver 1.2.4 (2017-03-09)

16.53.1 Security

• Knot Resolver 1.2.0 and higher could return AD flag for insecure answer if the daemon received answer with
invalid RRSIG several times in a row.

16.53.2 Improvements

• modules/policy: allow QTRACE policy to be chained with other policies

• hints.add_hosts(path): a new property

• module: document the API and simplify the code

• policy.MIRROR: support IPv6 link-local addresses

• policy.FORWARD: support IPv6 link-local addresses

• add net.outgoing_{v4,v6} to allow specifying address to use for connections

16.53.3 Bugfixes

• layer/iterate: some improvements in cname chain unrolling

• layer/validate: fix duplicate records in AUTHORITY section in case of WC expansion proof

• lua: do not truncate cache size to unsigned

• forwarding mode: correctly forward +cd flag

• fix a potential memory leak

• don’t treat answers that contain DS non-existence proof as insecure

• don’t store NSEC3 and their signatures in the cache

• layer/iterate: when processing delegations, check if qname is at or below new authority

154 Chapter 16. Release notes

Knot Resolver, Release 6.0.0a1

16.54 Knot Resolver 1.2.3 (2017-02-23)

16.54.1 Bugfixes

• Disable storing GLUE records into the cache even in the (non-default) QUERY_PERMISSIVE mode

• iterate: skip answer RRs that don’t match the query

• layer/iterate: some additional processing for referrals

• lib/resolve: zonecut fetching error was fixed

16.55 Knot Resolver 1.2.2 (2017-02-10)

16.55.1 Bugfixes:

• Fix -k argument processing to avoid out-of-bounds memory accesses

• lib/resolve: fix zonecut fetching for explicit DS queries

• hints: more NULL checks

• Fix TA bootstrapping for multiple TAs in the IANA XML file

16.55.2 Testing:

• Update tests to run tests with and without QNAME minimization

16.56 Knot Resolver 1.2.1 (2017-02-01)

16.56.1 Security:

• Under certain conditions, a cached negative answer from a CD query would be reused to construct response for
non-CD queries, resulting in Insecure status instead of Bogus. Only 1.2.0 release was affected.

16.56.2 Documentation

• Update the typo in the documentation: The query trace policy is named policy.QTRACE (and not policy.TRACE)

16.56.3 Bugfixes:

• lua: make the map command check its arguments

16.54. Knot Resolver 1.2.3 (2017-02-23) 155

Knot Resolver, Release 6.0.0a1

16.57 Knot Resolver 1.2.0 (2017-01-24)

16.57.1 Security:

• In a policy.FORWARD() mode, the AD flag was being always set by mistake. It is now cleared, as the pol-
icy.FORWARD() doesn’t do DNSSEC validation yet.

16.57.2 Improvements:

• The DNSSEC Validation has been refactored, fixing many resolving failures.

• Add module version that checks for updates and CVEs periodically.

• Support RFC7830: EDNS(0) padding in responses over TLS.

• Support CD flag on incoming requests.

• hints module: previously /etc/hosts was loaded by default, but not anymore. Users can now actually avoid loading
any file.

• DNS over TLS now creates ephemeral certs.

• Configurable cache.{min,max}_ttl option, with max_ttl defaulting to 6 days.

• Option to reorder RRs in the response.

• New policy.QTRACE policy to print packet contents

16.57.3 Bugfixes:

• Trust Anchor configuration is now more robust.

• Correctly answer NOTIMPL for meta-types and non-IN RR classes.

• Free TCP buffer on cancelled connection.

• Fix crash in hints module on empty hints file, and fix non-lowercase hints.

16.57.4 Miscellaneous:

• It now requires knot >= 2.3.1 to link successfully.

• The API+ABI for modules changed slightly.

• New LRU implementation.

16.58 Knot Resolver 1.1.1 (2016-08-24)

16.58.1 Bugfixes:

• Fix 0x20 randomization with retransmit

• Fix pass-through for the stub mode

• Fix the root hints IPv6 addresses

• Fix dst addr for retries over TCP

156 Chapter 16. Release notes

Knot Resolver, Release 6.0.0a1

16.58.2 Improvements:

• Track RTT of all tried servers for faster retransmit

• DAF: Allow forwarding to custom port

• systemd: Read EnvironmentFile and user $KRESD_ARGS

• systemd: Update systemd units to be named after daemon

16.59 Knot Resolver 1.1.0 (2016-08-12)

16.59.1 Improvements:

• RFC7873 DNS Cookies

• RFC7858 DNS over TLS

• HTTP/2 web interface, RESTful API

• Metrics exported in Prometheus

• DNS firewall module

• Explicit CNAME target fetching in strict mode

• Query minimisation improvements

• Improved integration with systemd

16.60 Knot Resolver 1.0.0 (2016-05-30)

16.60.1 Initial release:

• The first initial release

16.59. Knot Resolver 1.1.0 (2016-08-12) 157

Knot Resolver, Release 6.0.0a1

158 Chapter 16. Release notes

CHAPTER

SEVENTEEN

SYSTEM ARCHITECTURE

As mentioned in the getting started section, Knot Resolver is split into several components, namely the manager, kresd
and the garbage collector. In addition to these custom components, we also rely on supervisord.

There are two different control structures in place. Semantically, the manager controls every other component in Knot
Resolver. It processes configuration and passes it onto every other component. As a user you will always interact with
the manager (or kresd). At the same time though, the manager is not the root of the process hierarchy, Supervisord sits
at the top of the process tree and runs everything else.

Note: The rationale for this inverted process hierarchy is mainly stability. Supervisord sits at the top because it is a
reliable and stable software we can depend upon. It also does not process user input and its therefore shielded from
data processing bugs. This way, any component in Knot Resolver can crash and restart without impacting the rest of
the system.

17.1 Knot Resolver startup

The inverted process hierarchy complicates Resolver’s launch procedure. You might notice it when reading manager’s
logs just after start. What happens on cold start is:

1. Manager starts, reads its configuration and generates new supervisord configuration. Then, it starts supervisord
by using exec.

2. Supervisord loads it’s configuration, loads our extensions and start a new instance of manager.

3. Manager starts again, this time as a child of supervisord. As this is desired state, it loads the configuration again
and commands supervisord that it should start new instances of kresd.

17.2 Failure handling

Knot Resolver is designed to handle failures automatically. Anything except for supervisord will automatically restart.
If a failure is irrecoverable, all processes will stop and nothing will be left behind in a half-broken state. While a total
failure like this should never happen, it is possible and you should not rely on single instance of Knot Resolver for a
highly-available system.

Note: The ability to restart most of the components without downtime means, that Knot Resolver is able to transpar-
ently apply updates while running.

159

http://supervisord.org/

Knot Resolver, Release 6.0.0a1

17.3 Individual components

You can learn more about architecture of individual Resolver components in the following chapters.

17.3.1 kres-manager

Note: This guide is intended for advanced users and developers. You don’t have to know and understand any of this
to use Knot Resolver.

The manager is a component written in Python and a bit of C used for native extension modules. The main goal of
the manager is to ensure the system is set up according to a given configuration, provide a user-friendly interface.
Performance is only secondary to correctness.

The manager is mostly modelled around config processing pipeline:

API

The API server is implemented using aiohttp. This framework provides the application skeleton and manages applica-
tion runtime. The manager is actually a normal web application with the slight difference that we don’t save the data
in a database but rather modify state of other processes.

Code of the API server is located only in a single source code file. It also contains description of the manager’s startup
procedure.

Config processing

From the web framework, we receive data as simple strings and we need to parse and validate them. Due to packaging
issues in distros, we rolled our own solution not disimilar to Python library Pydantic.

Our tool lets us model config schema similarly to how Python’s native dataclasses are constructed. As input, it takes
Python’s dicts taken from PyYAML or JSON parser. The dict is mapped onto predefined Python classes while enforcing
typing rules. If desired, the mapping step is performed multiple times onto different classes, which allows us to process
intermediary values such as auto.

There are two relevant places in the source code - our generic modelling tools and the actual configuration data model.
Just next to the data model in the templates directory, there are Jinja2 templates for generating Lua code from the
configuration.

Actual manager

The actual core of the whole application is originally named the manager. It keeps a high-level view of the systems state
and performs all necessary operations to change the state to the desired one. In other words, manager is the component
handling rolling restarts, config update logic and more.

The code is contained mainly in a single source code file.

160 Chapter 17. System architecture

https://docs.aiohttp.org/en/stable
https://gitlab.nic.cz/knot/knot-resolver/-/blob/manager/manager/knot_resolver_manager/server.py
https://docs.pydantic.dev/
https://gitlab.nic.cz/knot/knot-resolver/-/tree/manager/manager/knot_resolver_manager/utils/modeling
https://gitlab.nic.cz/knot/knot-resolver/-/tree/manager/manager/knot_resolver_manager/datamodel
https://gitlab.nic.cz/knot/knot-resolver/-/blob/manager/manager/knot_resolver_manager/kres_manager.py

Knot Resolver, Release 6.0.0a1

Interactions with supervisord

Note: Let’s make a sidestep and let’s talk about abstractions. The manager component mentioned above interacts
with a general backend (or as we call sometimes call it - a subprocess manager). The idea is that the interactions
with the backend are not dependent on the backend’s implementation and we can choose which one we want to use.
Historically, we had two different backend implementations - systemd and supervisord. However, systemd turned out to
be inappropriate, it did not fit our needs, so we removed it. The abstraction remains though and it should be possible to
implement a different subprocess manager if it turns out useful. Please note though, the abstraction might be somewhat
leaky in practice as there is only one implementation.

Communication with supervisord happens on pretty much all possible levels. We edit its configuration file, we use its
XMLRPC API, we use Unix signals and we even attach to it from within its Python runtime. The interface is honestly
a bit messy and we had to use all we could to make it user friendly.

First, we generate supervisord’s configuration file. The configuration file sets stage for further communication by
specifying location of the pidfile and API Unix socket. It prepares configuration for subprocesses and most significantly,
it loads our custom extensions.

The extensions don’t use a lot of code. There are four of them - the simplest one provides a speedier XMLRPC API
for starting processes, it removes delays that are not necessary for our usecase. Another one implements systemd’s
sd_notify() API for supervisord, so we can track the lifecycle of ``kresd``s more precisely. Another extension
changes the way logging works and the last extension monitors the lifecycle of the manager and forwards some signals.

Note: The extensions mentioned above use monkeypatching to achieve their design goals. We settled for this approach,
because supervisord’s codebase appears mostly stable. The code we patch has not been changed for years. Other option
would be forking supervisord and vendoring it. We decided against that mainly due to packaging complications it would
cause with major Linux distributions.

For executing subprocesses, we don’t actually change the configuration file, we only use XMLRPC API and tell super-
visord to start already configured programs. For one specific call though, we use our extension instead of the build-in
method of starting processes as it is significantly faster.

17.3.2 kresd

17.3.3 kres-cache-gc

The garbage collector is a simple component which keeps the shared cache from overfilling. Every second it estimates
cache usage and if over 80%, records get deleted in order to free 10%. (Parameters can be configured.)

The freeing happens in a few passes. First all items are classified by their estimated usefulness, in a simple way based
on remaining TTL, type, etc. From this histogram it’s computed which “level of usefulness” will become the threshold,
so that roughly the planned total size gets freed. Then all items are passed to collect the set of keys to delete, and finally
the deletion is performed. As longer transactions can cause issues in LMDB, all passes are split into short batches.

17.3. Individual components 161

https://gitlab.nic.cz/knot/knot-resolver/-/blob/manager/manager/knot_resolver_manager/kresd_controller/interface.py
https://gitlab.nic.cz/knot/knot-resolver/-/blob/manager/manager/knot_resolver_manager/kresd_controller/supervisord/supervisord.conf.j2
https://gitlab.nic.cz/knot/knot-resolver/-/tree/manager/manager/knot_resolver_manager/kresd_controller/supervisord/plugin

Knot Resolver, Release 6.0.0a1

162 Chapter 17. System architecture

CHAPTER

EIGHTEEN

BUILDING FROM SOURCES

Note: Latest up-to-date packages for various distribution can be obtained from web https://knot-resolver.cz/download/.

Knot Resolver is written for UNIX-like systems using modern C standards. Beware that some 64-bit systems with
LuaJIT 2.1 may be affected by a problem – Linux on x86_64 is unaffected but Linux on aarch64 is.

$ git clone --recursive https://gitlab.nic.cz/knot/knot-resolver.git

18.1 Building with apkg

Knot Resolver uses apkg tool for upstream packaging. It allows build packages localy for supported distributions, which
it then installs. apkg also takes care of dependencies itself.

First, you need to install and setup apkg.

Tip: Install apkg with pipx to avoid version conflicts.

$ pip3 install apkg
$ apkg system-setup

Clone and change dir to knot-resolver git repository.

$ git clone --recursive https://gitlab.nic.cz/knot/knot-resolver.git
$ cd knot-resolver

Tip: The apkg status command can be used to find out some useful information, such as whether the current
distribution is supported.

When apkg is ready, a package can be built and installed.

takes care of dependencies
apkg build-dep

build package
apkg build

(continues on next page)

163

https://knot-resolver.cz/download/
https://github.com/LuaJIT/LuaJIT/blob/v2.1.0-beta3/doc/status.html#L100
https://gitlab.nic.cz/knot/knot-resolver/issues/216
https://pkg.labs.nic.cz/pages/apkg/
https://pypa.github.io/pipx/

Knot Resolver, Release 6.0.0a1

(continued from previous page)

(build and) install package, builds package when it is not already built
apkg install

After that Knot Resolver should be installed.

18.2 Building with Meson

Knot Resolver uses Meson Build system. Shell snippets below should be sufficient for basic usage but users unfamiliar
with Meson might want to read introductory article Using Meson.

18.2.1 Dependencies

Note: This section lists basic requirements. Individual modules might have additional build or runtime dependencies.

The following dependencies are needed to build and run Knot Resolver with core functions:

Requirement Notes
ninja build only
meson >= 0.49 build only1

C and C++ compiler build only2

pkg-config build only3

libknot 3.0.2+ Knot DNS libraries
LuaJIT 2.0+ Embedded scripting language
libuv 1.7+ Multiplatform I/O and services
lmdb Memory-mapped database for cache
GnuTLS TLS

Additional dependencies are needed to build and run Knot Resolver with manager: All dependencies are also listed in
pyproject.toml which is our authoritative source.

Requirement Notes
python3 >=3.6.8 Python language interpreter
Jinja2 Template engine for Python
PyYAML YAML framework for Python
aiohttp HTTP Client/Server for Python.
prometheus-client Prometheus client for Python
typing-extensions Compatibility module for Python

There are also optional packages that enable specific functionality in Knot Resolver:
1 If meson >= 0.49 isn’t available for your distro, check backports repository or use python pip to install it.
2 Requires __attribute__((cleanup)) and -MMD -MP for dependency file generation. We test GCC and Clang, and ICC is likely to work as

well.
3 You can use variables <dependency>_CFLAGS and <dependency>_LIBS to configure dependencies manually (i.e. libknot_CFLAGS and

libknot_LIBS).

164 Chapter 18. Building from sources

https://mesonbuild.com/
https://mesonbuild.com/Quick-guide.html
https://www.freedesktop.org/wiki/Software/pkg-config/
https://gitlab.nic.cz/knot/knot-dns
http://luajit.org/luajit.html
https://github.com/libuv/libuv
https://gitlab.nic.cz/knot/knot-resolver/-/blob/manager/manager/pyproject.toml
https://www.python.org/
https://jinja.palletsprojects.com/
https://pyyaml.org/
https://docs.aiohttp.org/
https://github.com/prometheus/client_python
https://pypi.org/project/typing-extensions/

Knot Resolver, Release 6.0.0a1

Optional Needed for Notes
jemalloc daemon Improve long-term memory consumption.
nghttp2 daemon DNS over HTTPS support.
libsystemd daemon Systemd watchdog support.
libcap-ng daemon Linux capabilities: support dropping them.
lua-basexx config tests Number base encoding/decoding for Lua.
lua-http modules/http HTTP/2 client/server for Lua.
lua-cqueues some lua modules
cmocka unit tests Unit testing framework.
dnsdist proxyv2 test DNS proxy server
Doxygen documentation Generating API documentation.
Sphinx, sphinx-tabs and sphinx_rtd_theme documentation Building this documentation.
Texinfo documentation Generating this documentation in Info format.
breathe documentation Exposing Doxygen API doc to Sphinx.
libprotobuf 3.0+ modules/dnstap Protocol Buffers support for dnstap.
libprotobuf-c 1.0+ modules/dnstap C bindings for Protobuf.
libfstrm 0.2+ modules/dnstap Frame Streams data transport protocol.
luacheck lint-lua Syntax and static analysis checker for Lua.
clang-tidy lint-c Syntax and static analysis checker for C.
luacov check-config Code coverage analysis for Lua modules.

Note: Some build dependencies can be found in home:CZ-NIC:knot-resolver-build.

On reasonably new systems most of the dependencies can be resolved from packages, here’s an overview for several
platforms.

• Debian/Ubuntu - Current stable doesn’t have new enough Meson and libknot. Use repository above or build
them yourself. Fresh list of dependencies can be found in Debian control file in our repo, search for “Build-
Depends”.

• CentOS/Fedora/RHEL/openSUSE - Fresh list of dependencies can be found in RPM spec file in our repo,
search for “BuildRequires”.

• FreeBSD - when installing from ports, all dependencies will install automatically, corresponding to the selected
options.

• Mac OS X - the dependencies can be obtained from Homebrew formula.

18.2.2 Compilation

Folowing meson command creates new build directory named build_dir, configures installation path to /tmp/kr
and enables static build (to allow installation to non-standard path). You can also configure some Build options, in this
case enable manager, which is disabled by default.

$ meson build_dir --prefix=/tmp/kr --default-library=static -Dmanager=enabled

After that it is possible to build and install Knot Resolver.

$ meson setup build_dir --prefix=/tmp/kr --default-library=static
$ ninja -C build_dir

(continues on next page)

18.2. Building with Meson 165

https://jemalloc.net
https://nghttp2.org/
https://www.freedesktop.org/wiki/Software/systemd/
https://people.redhat.com/sgrubb/libcap-ng/
https://github.com/aiq/basexx
https://luarocks.org/modules/daurnimator/http
https://25thandclement.com/~william/projects/cqueues.html
https://cmocka.org/
https://dnsdist.org/
https://www.doxygen.nl/manual/index.html
http://sphinx-doc.org/
https://sphinx-tabs.readthedocs.io
https://pypi.python.org/pypi/sphinx_rtd_theme
https://www.gnu.org/software/texinfo/
https://github.com/michaeljones/breathe
https://developers.google.com/protocol-buffers/
http://dnstap.info/
https://github.com/protobuf-c/protobuf-c/wiki
https://github.com/farsightsec/fstrm
http://luacheck.readthedocs.io
http://clang.llvm.org/extra/clang-tidy/index.html
https://lunarmodules.github.io/luacov/
https://build.opensuse.org/project/show/home:CZ-NIC:knot-resolver-build
https://gitlab.nic.cz/knot/knot-resolver/blob/master/distro/deb/control
https://gitlab.nic.cz/knot/knot-resolver/blob/master/distro/rpm/knot-resolver.spec
https://formulae.brew.sh/formula/knot-resolver

Knot Resolver, Release 6.0.0a1

(continued from previous page)

install Knot Resolver into the previously configured '/tmp/kr' path
$ ninja install -C build_dir

At this point you can execute the newly installed binary using path /tmp/kr/sbin/kresd.

Note: When compiling on OS X, creating a shared library is currently not possible when using luajit package from
Homebrew due to #37169.

18.2.3 Build options

It’s possible to change the compilation with build options. These are useful to packagers or developers who wish to
customize the daemon behaviour, run extended test suites etc. By default, these are all set to sensible values.

For complete list of build options create a build directory and run:

$ meson setup build_dir
$ meson configure build_dir

To customize project build options, use -Doption=value when creating a build directory:

$ meson setup build_dir -Ddoc=enabled

. . . or change options in an already existing build directory:

$ meson configure build_dir -Ddoc=enabled

18.2.4 Customizing compiler flags

If you’d like to use customize the build, see meson’s built-in options. For hardening, see b_pie.

For complete control over the build flags, use --buildtype=plain and set CFLAGS, LDFLAGS when creating the build
directory with meson command.

18.3 Tests

The following is a non-comprehensitve lists of various tests that can be found in this repo. These can be enabled by the
build system.

18.3.1 Unit tests

The unit tests depend on cmocka and can easily be executed after compilation. They are enabled by default (if cmocka
is found).

$ ninja -C build_dir
$ meson test -C build_dir --suite unit

166 Chapter 18. Building from sources

https://github.com/Homebrew/homebrew-core/issues/37169
https://mesonbuild.com/Builtin-options.html
https://cmocka.org/

Knot Resolver, Release 6.0.0a1

18.3.2 Postinstall tests

There following tests require a working installation of kresd. The binary kresd found in $PATH will be tested. When
testing through meson, $PATH is modified automatically and you just need to make sure to install kresd first.

$ ninja install -C build_dir

18.3.3 Config tests

Config tests utilize the kresd’s lua config file to execute arbitrary tests, typically testing various modules, their API etc.

To enable these tests, specify -Dconfig_tests=enabled option for meson. Multiple dependencies are required (refer
to meson’s output when configuring the build dir).

$ meson configure build_dir -Dconfig_tests=enabled
$ ninja install -C build_dir
$ meson test -C build_dir --suite config

18.3.4 Extra tests

The extra tests require a large set of additional dependencies and executing them outside of upstream development is
probably redundant.

To enable these tests, specify -Dextra_tests=enabled option for meson. Multiple dependencies are required (refer
to meson’s output when configuring the build dir). Enabling extra_tests automatically enables config tests as well.

Integration tests
The integration tests are using Deckard, the DNS test harness. The tests simulate specific DNS scenarios, including
authoritative server and their responses. These tests rely on linux namespaces, refer to Deckard documentation for
more info.

$ meson configure build_dir -Dextra_tests=enabled
$ ninja install -C build_dir
$ meson test -C build_dir --suite integration

Pytests
The pytest suite is designed to spin up a kresd instance, acquire a connected socket, and then performs any tests on it.
These tests are used to test for example TCP, TLS and its connection management.

$ meson configure build_dir -Dextra_tests=enabled
$ ninja install -C build_dir
$ meson test -C build_dir --suite pytests

18.3. Tests 167

https://gitlab.nic.cz/knot/deckard

Knot Resolver, Release 6.0.0a1

18.3.5 Useful meson commands

It’s possible to run only specific test suite or a test.

$ meson test -C build_dir --help
$ meson test -C build_dir --list
$ meson test -C build_dir --no-suite postinstall
$ meson test -C build_dir integration.serve_stale

18.4 Documentation

To check for documentation dependencies and allow its installation, use -Ddoc=enabled. The documentation doesn’t
build automatically. Instead, target doc must be called explicitly.

$ meson configure build_dir -Ddoc=enabled
$ ninja -C build_dir doc

18.5 Tarball

Released tarballs are available from https://knot-resolver.cz/download/

To make a release tarball from git, use the following command. The

$ ninja -C build_dir dist

It’s also possible to make a development snapshot tarball:

$./scripts/make-archive.sh

18.6 Packaging

Recommended build options for packagers:

• --buildtype=release for default flags (optimization, asserts, . . .). For complete control over flags, use plain
and see Customizing compiler flags.

• --prefix=/usr to customize prefix, other directories can be set in a similar fashion, see meson setup --help

• -Dsystemd_files=enabled for systemd unit files

• -Ddoc=enabled for offline documentation (see Documentation)

• -Dinstall_kresd_conf=enabled to install default config file

• -Dmanager=enabled to force build of the manager and its features

• -Dclient=enabled to force build of kresc

• -Dunit_tests=enabled to force build of unit tests

168 Chapter 18. Building from sources

https://knot-resolver.cz/download/

Knot Resolver, Release 6.0.0a1

18.6.1 Systemd

It’s recommended to use the upstream system unit files. If any customizations are required, drop-in files should be
used, instead of patching/changing the unit files themselves.

To install systemd unit files, use the -Dsystemd_files=enabled build option.

To support enabling services after boot, you must also link kresd.target to multi-user.target.wants:

ln -s ../kresd.target /usr/lib/systemd/system/multi-user.target.wants/kresd.target

18.6.2 Trust anchors

If the target distro has externally managed (read-only) DNSSEC trust anchors or root hints use this:

• -Dkeyfile_default=/usr/share/dns/root.key

• -Droot_hints=/usr/share/dns/root.hints

• -Dmanaged_ta=disabled

In case you want to have automatically managed DNSSEC trust anchors instead, set -Dmanaged_ta=enabled and
make sure both keyfile_default file and its parent directories are writable by kresd process (after package installa-
tion!).

18.7 Docker image

Visit hub.docker.com/r/cznic/knot-resolver for instructions how to run the container.

For development, it’s possible to build the container directly from your git tree:

$ docker build -t knot-resolver .

18.7. Docker image 169

https://hub.docker.com/r/cznic/knot-resolver/

Knot Resolver, Release 6.0.0a1

170 Chapter 18. Building from sources

CHAPTER

NINETEEN

KNOT RESOLVER LIBRARY

19.1 Requirements

• libknot 2.0 (Knot DNS high-performance DNS library.)

19.2 For users

The library as described provides basic services for name resolution, which should cover the usage, examples are in
the resolve API documentation.

Tip: If you’re migrating from getaddrinfo(), see “synchronous” API, but the library offers iterative API as well
to plug it into your event loop for example.

19.3 For developers

The resolution process starts with the functions in resolve.c, they are responsible for:

• reacting to state machine state (i.e. calling consume layers if we have an answer ready)

• interacting with the library user (i.e. asking caller for I/O, accepting queries)

• fetching assets needed by layers (i.e. zone cut)

This is the driver. The driver is not meant to know “how” the query resolves, but rather “when” to execute “what”.

171

https://gitlab.nic.cz/knot/knot-dns/tree/master/src/libknot

Knot Resolver, Release 6.0.0a1

On the other side are layers. They are responsible for dissecting the packets and informing the driver about the results.
For example, a produce layer generates query, a consume layer validates answer.

Tip: Layers are executed asynchronously by the driver. If you need some asset beforehand, you can signalize the
driver using returning state or current query flags. For example, setting a flag AWAIT_CUT forces driver to fetch zone
cut information before the packet is consumed; setting a RESOLVED flag makes it pop a query after the current set of
layers is finished; returning FAIL state makes it fail current query.

Layers can also change course of resolution, for example by appending additional queries.

consume = function (state, req, answer)
if answer:qtype() == kres.type.NS then

local qry = req:push(answer:qname(), kres.type.SOA, kres.class.IN)
qry.flags.AWAIT_CUT = true

(continues on next page)

172 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

(continued from previous page)

end
return state

end

This doesn’t block currently processed query, and the newly created sub-request will start as soon as driver finishes
processing current. In some cases you might need to issue sub-request and process it before continuing with the
current, i.e. validator may need a DNSKEY before it can validate signatures. In this case, layers can yield and resume
afterwards.

consume = function (state, req, answer)
if state == kres.YIELD then

print('continuing yielded layer')
return kres.DONE

else
if answer:qtype() == kres.type.NS then

local qry = req:push(answer:qname(), kres.type.SOA, kres.class.
→˓IN)

qry.flags.AWAIT_CUT = true
print('planned SOA query, yielding')
return kres.YIELD

end
return state

end
end

The YIELD state is a bit special. When a layer returns it, it interrupts current walk through the layers. When the
layer receives it, it means that it yielded before and now it is resumed. This is useful in a situation where you need a
sub-request to determine whether current answer is valid or not.

19.4 Writing layers

Warning: FIXME: this dev-docs section is outdated! Better see comments in files instead, for now.

The resolver library leverages the processing API from the libknot to separate packet processing code into layers.

Note: This is only crash-course in the library internals, see the resolver library documentation for the complete
overview of the services.

The library offers following services:

• Cache - MVCC cache interface for retrieving/storing resource records.

• Resolution plan - Query resolution plan, a list of partial queries (with hierarchy) sent in order to satisfy original
query. This contains information about the queries, nameserver choice, timing information, answer and its class.

• Nameservers - Reputation database of nameservers, this serves as an aid for nameserver choice.

A processing layer is going to be called by the query resolution driver for each query, so you’re going to work with
struct kr_request as your per-query context. This structure contains pointers to resolution context, resolution plan and
also the final answer.

19.4. Writing layers 173

Knot Resolver, Release 6.0.0a1

int consume(kr_layer_t *ctx, knot_pkt_t *pkt)
{

struct kr_request *req = ctx->req;
struct kr_query *qry = req->current_query;

}

This is only passive processing of the incoming answer. If you want to change the course of resolution, say satisfy a
query from a local cache before the library issues a query to the nameserver, you can use states (see the Static hints for
example).

int produce(kr_layer_t *ctx, knot_pkt_t *pkt)
{

struct kr_request *req = ctx->req;
struct kr_query *qry = req->current_query;

/* Query can be satisfied locally. */
if (can_satisfy(qry)) {

/* This flag makes the resolver move the query
* to the "resolved" list. */
qry->flags.RESOLVED = true;
return KR_STATE_DONE;

}

/* Pass-through. */
return ctx->state;

}

It is possible to not only act during the query resolution, but also to view the complete resolution plan afterwards. This
is useful for analysis-type tasks, or “per answer” hooks.

int finish(kr_layer_t *ctx)
{

struct kr_request *req = ctx->req;
struct kr_rplan *rplan = req->rplan;

/* Print the query sequence with start time. */
char qname_str[KNOT_DNAME_MAXLEN];
struct kr_query *qry = NULL
WALK_LIST(qry, rplan->resolved) {

knot_dname_to_str(qname_str, qry->sname, sizeof(qname_str));
printf("%s at %u\n", qname_str, qry->timestamp);

}

return ctx->state;
}

174 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

19.5 APIs in Lua

The APIs in Lua world try to mirror the C APIs using LuaJIT FFI, with several differences and enhancements. There
is not comprehensive guide on the API yet, but you can have a look at the bindings file.

19.5.1 Elementary types and constants

• States are directly in kres table, e.g. kres.YIELD, kres.CONSUME, kres.PRODUCE, kres.DONE, kres.
FAIL.

• DNS classes are in kres.class table, e.g. kres.class.IN for Internet class.

• DNS types are in kres.type table, e.g. kres.type.AAAA for AAAA type.

• DNS rcodes types are in kres.rcode table, e.g. kres.rcode.NOERROR.

• Extended DNS error codes are in kres.extended_error table, e.g. kres.extended_error.BLOCKED.

• Packet sections (QUESTION, ANSWER, AUTHORITY, ADDITIONAL) are in the kres.section table.

19.5.2 Working with domain names

The internal API usually works with domain names in label format, you can convert between text and wire freely.

local dname = kres.str2dname('business.se')
local strname = kres.dname2str(dname)

19.5.3 Working with resource records

Resource records are stored as tables.

local rr = { owner = kres.str2dname('owner'),
ttl = 0,
class = kres.class.IN,
type = kres.type.CNAME,
rdata = kres.str2dname('someplace') }

print(kres.rr2str(rr))

RRSets in packet can be accessed using FFI, you can easily fetch single records.

local rrset = { ... }
local rr = rrset:get(0) -- Return first RR
print(kres.dname2str(rr:owner()))
print(rr:ttl())
print(kres.rr2str(rr))

19.5. APIs in Lua 175

https://gitlab.nic.cz/knot/knot-resolver/blob/master/daemon/lua/kres.lua

Knot Resolver, Release 6.0.0a1

19.5.4 Working with packets

Packet is the data structure that you’re going to see in layers very often. They consists of a header, and four sections:
QUESTION, ANSWER, AUTHORITY, ADDITIONAL. The first section is special, as it contains the query name,
type, and class; the rest of the sections contain RRSets.

First you need to convert it to a type known to FFI and check basic properties. Let’s start with a snippet of a consume
layer.

consume = function (state, req, pkt)
print('rcode:', pkt:rcode())
print('query:', kres.dname2str(pkt:qname()), pkt:qclass(), pkt:qtype())
if pkt:rcode() ~= kres.rcode.NOERROR then

print('error response')
end

end

You can enumerate records in the sections.

local records = pkt:section(kres.section.ANSWER)
for i = 1, #records do

local rr = records[i]
if rr.type == kres.type.AAAA then

print(kres.rr2str(rr))
end

end

During produce or begin, you might want to want to write to packet. Keep in mind that you have to write packet sections
in sequence, e.g. you can’t write to ANSWER after writing AUTHORITY, it’s like stages where you can’t go back.

pkt:rcode(kres.rcode.NXDOMAIN)
-- Clear answer and write QUESTION
pkt:recycle()
pkt:question('\7blocked', kres.class.IN, kres.type.SOA)
-- Start writing data
pkt:begin(kres.section.ANSWER)
-- Nothing in answer
pkt:begin(kres.section.AUTHORITY)
local soa = { owner = '\7blocked', ttl = 900, class = kres.class.IN, type = kres.type.
→˓SOA, rdata = '...' }
pkt:put(soa.owner, soa.ttl, soa.class, soa.type, soa.rdata)

19.5.5 Working with requests

The request holds information about currently processed query, enabled options, cache, and other extra data. You
primarily need to retrieve currently processed query.

consume = function (state, req, pkt)
print(req.options)
print(req.state)

-- Print information about current query
local current = req:current()

(continues on next page)

176 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

(continued from previous page)

print(kres.dname2str(current.owner))
print(current.stype, current.sclass, current.id, current.flags)

end

In layers that either begin or finalize, you can walk the list of resolved queries.

local last = req:resolved()
print(last.stype)

As described in the layers, you can not only retrieve information about current query, but also push new ones or pop
old ones.

-- Push new query
local qry = req:push(pkt:qname(), kres.type.SOA, kres.class.IN)
qry.flags.AWAIT_CUT = true

-- Pop the query, this will erase it from resolution plan
req:pop(qry)

19.5.6 Significant Lua API changes

Incompatible changes since 3.0.0

In the main kres.* lua binding, there was only change in struct knot_rrset_t:

• constructor now accepts TTL as additional parameter (defaulting to zero)

• add_rdata() doesn’t accept TTL anymore (and will throw an error if passed)

In case you used knot_* functions and structures bound to lua:

• knot_dname_is_sub(a, b): knot_dname_in_bailiwick(a, b) > 0

• knot_rdata_rdlen(): knot_rdataset_at().len

• knot_rdata_data(): knot_rdataset_at().data

• knot_rdata_array_size(): offsetof(struct knot_data_t, data) + knot_rdataset_at().len

• struct knot_rdataset: field names were renamed to .count and .rdata

• some functions got inlined from headers, but you can use their kr_* clones: kr_rrsig_sig_inception(),
kr_rrsig_sig_expiration(), kr_rrsig_type_covered(). Note that these functions now accept knot_rdata_t* instead
of a pair knot_rdataset_t* and size_t - you can use knot_rdataset_at() for that.

• knot_rrset_add_rdata() doesn’t take TTL parameter anymore

• knot_rrset_init_empty() was inlined, but in lua you can use the constructor

• knot_rrset_ttl() was inlined, but in lua you can use :ttl() method instead

• knot_pkt_qname(), _qtype(), _qclass(), _rr(), _section() were inlined, but in lua you can use methods instead,
e.g. myPacket:qname()

• knot_pkt_free() takes knot_pkt_t* instead of knot_pkt_t**, but from lua you probably didn’t want to use that;
constructor ensures garbage collection.

19.5. APIs in Lua 177

Knot Resolver, Release 6.0.0a1

19.6 API reference

Warning: This section is generated with doxygen and breathe. Due to their limitations, some symbols may be
incorrectly described or missing entirely. For exhaustive and accurate reference, refer to the header files instead.

• Name resolution

• Cache

• Nameservers

• Modules

• Utilities

• Generics library

19.6.1 Name resolution

The API provides an API providing a “consumer-producer”-like interface to enable user to plug it into existing event
loop or I/O code.

Example usage of the iterative API:

// Create request and its memory pool
struct kr_request req = {

.pool = {
.ctx = mp_new (4096),
.alloc = (mm_alloc_t) mp_alloc

}
};

// Setup and provide input query
int state = kr_resolve_begin(&req, ctx);
state = kr_resolve_consume(&req, query);

// Generate answer
while (state == KR_STATE_PRODUCE) {

// Additional query generate, do the I/O and pass back answer
state = kr_resolve_produce(&req, &addr, &type, query);
while (state == KR_STATE_CONSUME) {

int ret = sendrecv(addr, proto, query, resp);

// If I/O fails, make "resp" empty
state = kr_resolve_consume(&request, addr, resp);
knot_pkt_clear(resp);

}
knot_pkt_clear(query);

}

(continues on next page)

178 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

(continued from previous page)

// "state" is either DONE or FAIL
kr_resolve_finish(&request, state);

Defines

kr_request_selected(req)
Initializer for an array of *_selected.

Typedefs

typedef uint8_t *(*alloc_wire_f)(struct kr_request *req, uint16_t *maxlen)
Allocate buffer for answer’s wire (*maxlen may get lowered).

Motivation: XDP wire allocation is an overlap of library and daemon:

• it needs to be called from the library

• it needs to rely on some daemon’s internals

• the library (currently) isn’t allowed to directly use symbols from daemon (contrary to modules), e.g. some
of our lib-using tests run without daemon

Note: after we obtain the wire, we’re obliged to send it out. (So far there’s no use case to allow cancelling at that
point.)

typedef bool (*addr_info_f)(struct sockaddr*)

typedef void (*async_resolution_f)(knot_dname_t*, enum knot_rr_type)

typedef see_source_code kr_sockaddr_array_t

Enums

enum kr_rank
RRset rank - for cache and ranked_rr_*.

The rank meaning consists of one independent flag - KR_RANK_AUTH, and the rest have meaning of val-
ues where only one can hold at any time. You can use one of the enums as a safe initial value, optionally |
KR_RANK_AUTH; otherwise it’s best to manipulate ranks via the kr_rank_* functions.

See also: https://tools.ietf.org/html/rfc2181#section-5.4.1 https://tools.ietf.org/html/rfc4035#section-4.3

Note: The representation is complicated by restrictions on integer comparison:

• AUTH must be > than !AUTH

• AUTH INSECURE must be > than AUTH (because it attempted validation)

• !AUTH SECURE must be > than AUTH (because it’s valid)

19.6. API reference 179

https://tools.ietf.org/html/rfc2181#section-5.4.1
https://tools.ietf.org/html/rfc4035#section-4.3

Knot Resolver, Release 6.0.0a1

Values:

enumerator KR_RANK_INITIAL
Did not attempt to validate.

It’s assumed compulsory to validate (or prove insecure).

enumerator KR_RANK_OMIT
Do not attempt to validate.

(And don’t consider it a validation failure.)

enumerator KR_RANK_TRY
Attempt to validate, but failures are non-fatal.

enumerator KR_RANK_INDET
Unable to determine whether it should be secure.

enumerator KR_RANK_BOGUS
Ought to be secure but isn’t.

enumerator KR_RANK_MISMATCH

enumerator KR_RANK_MISSING
No RRSIG found for that owner+type combination.

enumerator KR_RANK_INSECURE
Proven to be insecure, i.e.

we have a chain of trust from TAs that cryptographically denies the possibility of existence of a positive
chain of trust from the TAs to the record. Or it may be covered by a closer negative TA.

enumerator KR_RANK_AUTH
Authoritative data flag; the chain of authority was “verified”.

Even if not set, only in-bailiwick stuff is acceptable, i.e. almost authoritative (example: mandatory glue
and its NS RR).

enumerator KR_RANK_SECURE
Verified whole chain of trust from the closest TA.

180 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

Functions

bool kr_rank_check(uint8_t rank)
Check that a rank value is valid.

Meant for assertions.

bool kr_rank_test(uint8_t rank, uint8_t kr_flag)
Test the presence of any flag/state in a rank, i.e.

including KR_RANK_AUTH.

static inline void kr_rank_set(uint8_t *rank, uint8_t kr_flag)
Set the rank state.

The _AUTH flag is kept as it was.

int kr_resolve_begin(struct kr_request *request, struct kr_context *ctx)
Begin name resolution.

Note: Expects a request to have an initialized mempool.

Parameters
• request – request state with initialized mempool

• ctx – resolution context

Returns
CONSUME (expecting query)

knot_rrset_t *kr_request_ensure_edns(struct kr_request *request)
Ensure that request->answer->opt_rr is present if query has EDNS.

This function should be used after clearing a response packet to ensure its opt_rr is properly set. Returns the
opt_rr (for convenience) or NULL.

knot_pkt_t *kr_request_ensure_answer(struct kr_request *request)
Ensure that request->answer is usable, and return it (for convenience).

It may return NULL, in which case it marks ->state with _FAIL and no answer will be sent. Only use this when
it’s guaranteed that there will be no delay before sending it. You don’t need to call this in places where “resolver
knows” that there will be no delay, but even there you need to check if the ->answer is NULL (unless you check
for _FAIL anyway).

int kr_resolve_consume(struct kr_request *request, struct kr_transport **transport, knot_pkt_t *packet)
Consume input packet (may be either first query or answer to query originated from kr_resolve_produce())

Note: If the I/O fails, provide an empty or NULL packet, this will make iterator recognize nameserver failure.

Parameters
• request – request state (awaiting input)

• src – [in] packet source address

• packet – [in] input packet

19.6. API reference 181

Knot Resolver, Release 6.0.0a1

Returns
any state

int kr_resolve_produce(struct kr_request *request, struct kr_transport **transport, knot_pkt_t *packet)
Produce either next additional query or finish.

If the CONSUME is returned then dst, type and packet will be filled with appropriate values and caller is respon-
sible to send them and receive answer. If it returns any other state, then content of the variables is undefined.

Parameters
• request – request state (in PRODUCE state)

• dst – [out] possible address of the next nameserver

• type – [out] possible used socket type (SOCK_STREAM, SOCK_DGRAM)

• packet – [out] packet to be filled with additional query

Returns
any state

int kr_resolve_checkout(struct kr_request *request, const struct sockaddr *src, struct kr_transport *transport,
knot_pkt_t *packet)

Finalises the outbound query packet with the knowledge of the IP addresses.

Note: The function must be called before actual sending of the request packet.

Parameters
• request – request state (in PRODUCE state)

• src – address from which the query is going to be sent

• dst – address of the name server

• type – used socket type (SOCK_STREAM, SOCK_DGRAM)

• packet – [in,out] query packet to be finalised

Returns
kr_ok() or error code

int kr_resolve_finish(struct kr_request *request, int state)
Finish resolution and commit results if the state is DONE.

Note: The structures will be deinitialized, but the assigned memory pool is not going to be destroyed, as it’s
owned by caller.

Parameters
• request – request state

• state – either DONE or FAIL state (to be assigned to request->state)

Returns
DONE

182 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

struct kr_rplan *kr_resolve_plan(struct kr_request *request)
Return resolution plan.

Parameters
• request – request state

Returns
pointer to rplan

knot_mm_t *kr_resolve_pool(struct kr_request *request)
Return memory pool associated with request.

Parameters
• request – request state

Returns
mempool

int kr_request_set_extended_error(struct kr_request *request, int info_code, const char *extra_text)
Set the extended DNS error for request.

The error is set only if it has a higher or the same priority as the one already assigned. The provided extra_text
may be NULL, or a string that is allocated either statically, or on the request’s mempool. To clear any error, call
it with KNOT_EDNS_EDE_NONE and NULL as extra_text.

To facilitate debugging, we include a unique base32 identifier at the start of the extra_text field for every call of
this function. To generate such an identifier, you can use the command: $ base32 /dev/random | head -c 4

Parameters
• request – request state

• info_code – extended DNS error code

• extra_text – optional string with additional information

Returns
info_code that is set after the call

static inline void kr_query_inform_timeout(struct kr_request *req, const struct kr_query *qry)

struct kr_context
#include <resolve.h> Name resolution context.

Resolution context provides basic services like cache, configuration and options.

Note: This structure is persistent between name resolutions and may be shared between threads.

19.6. API reference 183

Knot Resolver, Release 6.0.0a1

Public Members

struct kr_qflags options
Default kr_request flags.

For startup defaults see init_resolver()

knot_rrset_t *downstream_opt_rr
Default EDNS towards both clients and upstream.

LATER: consider splitting the two, e.g. allow separately configured limits for UDP packet size (say, LAN
is under control).

knot_rrset_t *upstream_opt_rr

trie_t *trust_anchors

trie_t *negative_anchors

struct kr_zonecut root_hints

struct kr_cache cache

unsigned cache_rtt_tout_retry_interval

module_array_t *modules

struct kr_cookie_ctx cookie_ctx

kr_cookie_lru_t *cache_cookie

int32_t tls_padding
See net.tls_padding in ../daemon/README.rst — -1 is “true” (default policy), 0 is “false” (no
padding)

knot_mm_t *pool

struct kr_request_qsource_flags

184 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

Public Members

bool tcp
true if the request is not on UDP; only meaningful if (dst_addr).

bool tls
true if the request is encrypted; only meaningful if (dst_addr).

bool http
true if the request is on HTTP; only meaningful if (dst_addr).

bool xdp
true if the request is on AF_XDP; only meaningful if (dst_addr).

struct kr_extended_error

Public Members

int32_t info_code
May contain -1 (KNOT_EDNS_EDE_NONE); filter before converting to uint16_t.

const char *extra_text
Can be NULL.

Allocated on the kr_request::pool or static.

struct kr_request
#include <resolve.h> Name resolution request.

Keeps information about current query processing between calls to processing APIs, i.e. current resolved query,
resolution plan, . . . Use this instead of the simple interface if you want to implement multiplexing or custom I/O.

Note: All data for this request must be allocated from the given pool.

Public Members

struct kr_context *ctx

knot_pkt_t *answer
See kr_request_ensure_answer()

struct kr_query *current_query
Current evaluated query.

19.6. API reference 185

Knot Resolver, Release 6.0.0a1

const struct sockaddr *addr
Address that originated the request.

May be that of a client behind a proxy, if PROXYv2 is used. Otherwise, it will be the same as comm_addr.
NULL for internal origin.

const struct sockaddr *comm_addr
Address that communicated the request.

This may be the address of a proxy. It is the same as addr if no proxy is used. NULL for internal origin.

const struct sockaddr *dst_addr
Address that accepted the request.

NULL for internal origin. Beware: in case of UDP on wildcard address it will be wildcard; closely related:
issue #173.

const knot_pkt_t *packet

struct kr_request_qsource_flags flags
Request flags from the point of view of the original client.

This client may be behind a proxy.

struct kr_request_qsource_flags comm_flags
Request flags from the point of view of the client actually communicating with the resolver.

When PROXYv2 protocol is used, this describes the request from the proxy. When there is no proxy, this
will have exactly the same value as flags.

size_t size
query packet size

int32_t stream_id
HTTP/2 stream ID for DoH requests.

kr_http_header_array_t headers
HTTP/2 headers for DoH requests.

struct kr_request.[anonymous] qsource

unsigned rtt
Current upstream RTT.

const struct kr_transport *transport
Current upstream transport.

struct kr_request.[anonymous] upstream
Upstream information, valid only in consume() phase.

186 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

struct kr_qflags options

int state

ranked_rr_array_t answ_selected

ranked_rr_array_t auth_selected

ranked_rr_array_t add_selected

bool answ_validated
internal to validator; beware of caching, etc.

bool auth_validated
see answ_validated ^^ ; TODO

uint8_t rank
Overall rank for the request.

Values from kr_rank, currently just KR_RANK_SECURE and _INITIAL. Only read this in finish phase
and after validator, please. Meaning of _SECURE: all RRs in answer+authority are _SECURE, including
any negative results implied (NXDOMAIN, NODATA).

struct kr_rplan rplan

trace_log_f trace_log
Logging tracepoint.

trace_callback_f trace_finish
Request finish tracepoint.

int vars_ref
Reference to per-request variable table.

LUA_NOREF if not set.

knot_mm_t pool

unsigned int uid
for logging purposes only

addr_info_f is_tls_capable

addr_info_f is_tcp_connected

19.6. API reference 187

Knot Resolver, Release 6.0.0a1

addr_info_f is_tcp_waiting

kr_sockaddr_array_t forwarding_targets
When forwarding, possible targets are put here.

struct kr_request.[anonymous] selection_context

unsigned int count_no_nsaddr

unsigned int count_fail_row

alloc_wire_f alloc_wire_cb
CB to allocate answer wire (can be NULL).

struct kr_extended_error extended_error
EDE info; don’t modify directly, use kr_request_set_extended_error()

Typedefs

typedef int32_t (*kr_stale_cb)(int32_t ttl, const knot_dname_t *owner, uint16_t type, const struct kr_query *qry)
Callback for serve-stale decisions.

Param ttl
the expired TTL (i.e. it’s < 0)

Return
the adjusted TTL (typically 1) or < 0.

Functions

void kr_qflags_set(struct kr_qflags *fl1, struct kr_qflags fl2)
Combine flags together.

This means set union for simple flags.

void kr_qflags_clear(struct kr_qflags *fl1, struct kr_qflags fl2)
Remove flags.

This means set-theoretic difference.

int kr_rplan_init(struct kr_rplan *rplan, struct kr_request *request, knot_mm_t *pool)
Initialize resolution plan (empty).

Parameters
• rplan – plan instance

• request – resolution request

• pool – ephemeral memory pool for whole resolution

188 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

void kr_rplan_deinit(struct kr_rplan *rplan)
Deinitialize resolution plan, aborting any uncommitted transactions.

Parameters
• rplan – plan instance

bool kr_rplan_empty(struct kr_rplan *rplan)
Return true if the resolution plan is empty (i.e.

finished or initialized)

Parameters
• rplan – plan instance

Returns
true or false

struct kr_query *kr_rplan_push_empty(struct kr_rplan *rplan, struct kr_query *parent)
Push empty query to the top of the resolution plan.

Note: This query serves as a cookie query only.

Parameters
• rplan – plan instance

• parent – query parent (or NULL)

Returns
query instance or NULL

struct kr_query *kr_rplan_push(struct kr_rplan *rplan, struct kr_query *parent, const knot_dname_t *name,
uint16_t cls, uint16_t type)

Push a query to the top of the resolution plan.

Note: This means that this query takes precedence before all pending queries.

Parameters
• rplan – plan instance

• parent – query parent (or NULL)

• name – resolved name

• cls – resolved class

• type – resolved type

Returns
query instance or NULL

19.6. API reference 189

Knot Resolver, Release 6.0.0a1

int kr_rplan_pop(struct kr_rplan *rplan, struct kr_query *qry)
Pop existing query from the resolution plan.

Note: Popped queries are not discarded, but moved to the resolved list.

Parameters
• rplan – plan instance

• qry – resolved query

Returns
0 or an error

bool kr_rplan_satisfies(struct kr_query *closure, const knot_dname_t *name, uint16_t cls, uint16_t type)
Return true if resolution chain satisfies given query.

struct kr_query *kr_rplan_resolved(struct kr_rplan *rplan)
Return last resolved query.

struct kr_query *kr_rplan_last(struct kr_rplan *rplan)
Return last query (either currently being solved or last resolved).

This is necessary to retrieve the last query in case of resolution failures (e.g. time limit reached).

struct kr_query *kr_rplan_find_resolved(struct kr_rplan *rplan, struct kr_query *parent, const knot_dname_t
*name, uint16_t cls, uint16_t type)

Check if a given query already resolved.

Parameters
• rplan – plan instance

• parent – query parent (or NULL)

• name – resolved name

• cls – resolved class

• type – resolved type

Returns
query instance or NULL

struct kr_qflags
#include <rplan.h> Query flags.

Public Members

bool NO_MINIMIZE
Don’t minimize QNAME.

bool NO_IPV6
Disable IPv6.

190 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

bool NO_IPV4
Disable IPv4.

bool TCP
Use TCP (or TLS) for this query.

bool NO_ANSWER
Do not send any answer to the client.

Request state should be set to KR_STATE_FAIL when this flag is set.

bool RESOLVED
Query is resolved.

Note that kr_query gets RESOLVED before following a CNAME chain; see .CNAME.

bool AWAIT_IPV4
Query is waiting for A address.

bool AWAIT_IPV6
Query is waiting for AAAA address.

bool AWAIT_CUT
Query is waiting for zone cut lookup.

bool NO_EDNS
Don’t use EDNS.

bool CACHED
Query response is cached.

bool NO_CACHE
No cache for lookup; exception: finding NSs and subqueries.

bool EXPIRING
Query response is cached but expiring.

See is_expiring().

bool ALLOW_LOCAL
Allow queries to local or private address ranges.

bool DNSSEC_WANT
Want DNSSEC secured answer; exception: +cd, i.e.

knot_wire_get_cd(request->qsource.packet->wire)

19.6. API reference 191

Knot Resolver, Release 6.0.0a1

bool DNSSEC_BOGUS
Query response is DNSSEC bogus.

bool DNSSEC_INSECURE
Query response is DNSSEC insecure.

bool DNSSEC_CD
Instruction to set CD bit in request.

bool STUB
Stub resolution, accept received answer as solved.

bool ALWAYS_CUT
Always recover zone cut (even if cached).

bool DNSSEC_WEXPAND
Query response has wildcard expansion.

bool PERMISSIVE
Permissive resolver mode.

bool STRICT
Strict resolver mode.

bool BADCOOKIE_AGAIN
Query again because bad cookie returned.

bool CNAME
Query response contains CNAME in answer section.

bool REORDER_RR
Reorder cached RRs.

bool TRACE
Also log answers on debug level.

bool NO_0X20
Disable query case randomization .

bool DNSSEC_NODS
DS non-existence is proven.

bool DNSSEC_OPTOUT
Closest encloser proof has optout.

192 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

bool NONAUTH
Non-authoritative in-bailiwick records are enough.

TODO: utilize this also outside cache.

bool FORWARD
Forward all queries to upstream; validate answers.

bool DNS64_MARK
Internal mark for dns64 module.

bool CACHE_TRIED
Internal to cache module.

bool NO_NS_FOUND
No valid NS found during last PRODUCE stage.

bool PKT_IS_SANE
Set by iterator in consume phase to indicate whether some basic aspects of the packet are OK, e.g.

QNAME.

bool DNS64_DISABLE
Don’t do any DNS64 stuff (meant for view:addr).

struct kr_query
#include <rplan.h> Single query representation.

Public Members

struct kr_query *parent

knot_dname_t *sname
The name to resolve - lower-cased, uncompressed.

uint16_t stype

uint16_t sclass

uint16_t id

uint16_t reorder
Seed to reorder (cached) RRs in answer or zero.

struct kr_qflags flags

19.6. API reference 193

Knot Resolver, Release 6.0.0a1

struct kr_qflags forward_flags

uint32_t secret

uint32_t uid
Query iteration number, unique within the kr_rplan.

uint64_t creation_time_mono

uint64_t timestamp_mono
Time of query created or time of query to upstream resolver (milliseconds).

struct timeval timestamp
Real time for TTL+DNSSEC checks (.tv_sec only).

struct kr_zonecut zone_cut

struct kr_layer_pickle *deferred

int8_t cname_depth
Current xNAME depth, set by iterator.

0 = uninitialized, 1 = no CNAME, . . . See also KR_CNAME_CHAIN_LIMIT.

struct kr_query *cname_parent
Pointer to the query that originated this one because of following a CNAME (or NULL).

struct kr_request *request
Parent resolution request.

kr_stale_cb stale_cb
See the type.

struct kr_server_selection server_selection

struct kr_rplan
#include <rplan.h> Query resolution plan structure.

The structure most importantly holds the original query, answer and the list of pending queries required to resolve
the original query. It also keeps a notion of current zone cut.

194 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

Public Members

kr_qarray_t pending
List of pending queries.

Beware: order is significant ATM, as the last is the next one to solve, and they may be inter-dependent.

kr_qarray_t resolved
List of resolved queries.

struct kr_query *initial
The initial query (also in pending or resolved).

struct kr_request *request
Parent resolution request.

knot_mm_t *pool
Temporary memory pool.

uint32_t next_uid
Next value for kr_query::uid (incremental).

19.6.2 Cache

Defines

TTL_MAX_MAX

Functions

int cache_peek(kr_layer_t *ctx, knot_pkt_t *pkt)

int cache_stash(kr_layer_t *ctx, knot_pkt_t *pkt)

int kr_cache_open(struct kr_cache *cache, const struct kr_cdb_api *api, struct kr_cdb_opts *opts, knot_mm_t
*mm)

Open/create cache with provided storage options.

Parameters
• cache – cache structure to be initialized

• api – storage engine API

• opts – storage-specific options (may be NULL for default)

• mm – memory context.

Returns
0 or an error code

19.6. API reference 195

Knot Resolver, Release 6.0.0a1

void kr_cache_close(struct kr_cache *cache)
Close persistent cache.

Note: This doesn’t clear the data, just closes the connection to the database.

Parameters
• cache – structure

int kr_cache_commit(struct kr_cache *cache)
Run after a row of operations to release transaction/lock if needed.

static inline bool kr_cache_is_open(struct kr_cache *cache)
Return true if cache is open and enabled.

static inline void kr_cache_make_checkpoint(struct kr_cache *cache)
(Re)set the time pair to the current values.

int kr_cache_insert_rr(struct kr_cache *cache, const knot_rrset_t *rr, const knot_rrset_t *rrsig, uint8_t rank,
uint32_t timestamp, bool ins_nsec_p)

Insert RRSet into cache, replacing any existing data.

Parameters
• cache – cache structure

• rr – inserted RRSet

• rrsig – RRSIG for inserted RRSet (optional)

• rank – rank of the data

• timestamp – current time (as-if; if the RR are older, their timestamp is appropriate)

• ins_nsec_p – update NSEC* parameters if applicable

Returns
0 or an errcode

int kr_cache_clear(struct kr_cache *cache)
Clear all items from the cache.

Parameters
• cache – cache structure

Returns
if nonzero is returned, there’s a big problem - you probably want to abort(), perhaps except for
kr_error(EAGAIN) which probably indicates transient errors.

int kr_cache_peek_exact(struct kr_cache *cache, const knot_dname_t *name, uint16_t type, struct kr_cache_p
*peek)

int32_t kr_cache_ttl(const struct kr_cache_p *peek, const struct kr_query *qry, const knot_dname_t *name,
uint16_t type)

int kr_cache_materialize(knot_rdataset_t *dst, const struct kr_cache_p *ref, knot_mm_t *pool)

196 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

int kr_cache_remove(struct kr_cache *cache, const knot_dname_t *name, uint16_t type)
Remove an entry from cache.

Note: only “exact hits” are considered ATM, and some other information may be removed alongside.

Parameters
• cache – cache structure

• name – dname

• type – rr type

Returns
number of deleted records, or negative error code

int kr_cache_match(struct kr_cache *cache, const knot_dname_t *name, bool exact_name, knot_db_val_t
keyval[][2], int maxcount)

Get keys matching a dname lf prefix.

Note: the cache keys are matched by prefix, i.e. it very much depends on their structure; CACHE_KEY_DEF.

Parameters
• cache – cache structure

• name – dname

• exact_name – whether to only consider exact name matches

• keyval – matched key-value pairs

• maxcount – limit on the number of returned key-value pairs

Returns
result count or an errcode

int kr_cache_remove_subtree(struct kr_cache *cache, const knot_dname_t *name, bool exact_name, int
maxcount)

Remove a subtree in cache.

It’s like _match but removing them instead of returning.

Returns
number of deleted entries or an errcode

int kr_cache_closest_apex(struct kr_cache *cache, const knot_dname_t *name, bool is_DS, knot_dname_t
**apex)

Find the closest cached zone apex for a name (in cache).

Note: timestamp is found by a syscall, and stale-serving is not considered

Parameters
• is_DS – start searching one name higher

19.6. API reference 197

Knot Resolver, Release 6.0.0a1

Returns
the number of labels to remove from the name, or negative error code

int kr_unpack_cache_key(knot_db_val_t key, knot_dname_t *buf, uint16_t *type)
Unpack dname and type from db key.

Note: only “exact hits” are considered ATM, moreover xNAME records are “hidden” as NS. (see comments in
struct entry_h)

Parameters
• key – db key representation

• buf – output buffer of domain name in dname format

• type – output for type

Returns
length of dname or an errcode

int kr_cache_check_health(struct kr_cache *cache, int interval)
Periodic kr_cdb_api::check_health().

Parameters
• interval – in milliseconds. 0 for one-time check, -1 to stop the checks.

Returns
see check_health() for one-time check; otherwise normal kr_error() code.

Variables

const char *kr_cache_emergency_file_to_remove
Path to cache file to remove on critical out-of-space error.

(do NOT modify it)

struct kr_cache
#include <api.h> Cache structure, keeps API, instance and metadata.

Public Members

kr_cdb_pt db
Storage instance.

const struct kr_cdb_api *api
Storage engine.

struct kr_cdb_stats stats

198 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

uint32_t ttl_min

uint32_t ttl_max
TTL limits; enforced primarily in iterator actually.

struct timeval checkpoint_walltime
Wall time on the last check-point.

uint64_t checkpoint_monotime
Monotonic milliseconds on the last check-point.

uv_timer_t *health_timer
Timer used for kr_cache_check_health()

struct kr_cache_p

Public Members

uint32_t time
The time of inception.

uint32_t ttl
TTL at inception moment.

Assuming it fits into int32_t ATM.

uint8_t rank
See enum kr_rank.

void *raw_data

void *raw_bound

struct kr_cache_p.[anonymous] [anonymous]

Header internal for cache implementation(s).

Only LMDB works for now.

19.6. API reference 199

Knot Resolver, Release 6.0.0a1

Defines

KR_CACHE_KEY_MAXLEN

LATER(optim.): this is overshot, but struct key usage should be cheap ATM.

KR_CACHE_RR_COUNT_SIZE

Size of the RR count field.

VERBOSE_MSG(qry, ...)

WITH_VERBOSE(qry)

cache_op(cache, op, ...)
Shorthand for operations on cache backend.

Typedefs

typedef uint32_t nsec_p_hash_t
Hash of NSEC3 parameters, used as a tag to separate different chains for same zone.

typedef knot_db_val_t entry_list_t[EL_LENGTH]
Decompressed entry_apex.

It’s an array of unparsed entry_h references. Note: arrays are passed “by reference” to functions (in C99).

Enums

enum [anonymous]
Values:

enumerator ENTRY_APEX_NSECS_CNT

enum EL
Indices for decompressed entry_list_t.

Values:

enumerator EL_NS

enumerator EL_CNAME

enumerator EL_DNAME

enumerator EL_LENGTH

200 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

enum [anonymous]
Values:

enumerator AR_ANSWER
Positive answer record.

It might be wildcard-expanded.

enumerator AR_SOA
SOA record.

enumerator AR_NSEC
NSEC* covering or matching the SNAME (next closer name in NSEC3 case).

enumerator AR_WILD
NSEC* covering or matching the source of synthesis.

enumerator AR_CPE
NSEC3 matching the closest provable encloser.

Functions

struct entry_h *entry_h_consistent_E(knot_db_val_t data, uint16_t type)
Check basic consistency of entry_h for ‘E’ entries, not looking into ->data.

(for is_packet the length of data is checked)

struct entry_apex *entry_apex_consistent(knot_db_val_t val)

static struct entry_h *entry_h_consistent_NSEC(knot_db_val_t data)
Consistency check, ATM common for NSEC and NSEC3.

static struct entry_h *entry_h_consistent(knot_db_val_t data, uint16_t type)

static inline int nsec_p_rdlen(const uint8_t *rdata)

static inline nsec_p_hash_t nsec_p_mkHash(const uint8_t *nsec_p)

static inline size_t key_nwz_off(const struct key *k)

static inline size_t key_nsec3_hash_off(const struct key *k)

knot_db_val_t key_exact_type_maypkt(struct key *k, uint16_t type)
Finish constructing string key for for exact search.

It’s assumed that kr_dname_lf(k->buf, owner, *) had been ran.

static inline knot_db_val_t key_exact_type(struct key *k, uint16_t type)
Like key_exact_type_maypkt but with extra checks if used for RRs only.

static inline uint16_t EL2RRTYPE(enum EL i)

19.6. API reference 201

Knot Resolver, Release 6.0.0a1

int entry_h_seek(knot_db_val_t *val, uint16_t type)
There may be multiple entries within, so rewind val to the one we want.

ATM there are multiple types only for the NS ktype - it also accommodates xNAMEs.

Note: val->len represents the bound of the whole list, not of a single entry.

Note: in case of ENOENT, val is still rewound to the beginning of the next entry.

Returns
error code TODO: maybe get rid of this API?

int entry_h_splice(knot_db_val_t *val_new_entry, uint8_t rank, const knot_db_val_t key, const uint16_t ktype,
const uint16_t type, const knot_dname_t *owner, const struct kr_query *qry, struct kr_cache
*cache, uint32_t timestamp)

Prepare space to insert an entry.

Some checks are performed (rank, TTL), the current entry in cache is copied with a hole ready for the new entry
(old one of the same type is cut out).

Parameters
• val_new_entry – The only changing parameter; ->len is read, ->data written.

Returns
error code

int entry_list_parse(const knot_db_val_t val, entry_list_t list)
Parse an entry_apex into individual items.

Returns
error code.

static inline size_t to_even(size_t n)

static inline int entry_list_serial_size(const entry_list_t list)

void entry_list_memcpy(struct entry_apex *ea, entry_list_t list)
Fill contents of an entry_apex.

Note: NULL pointers are overwritten - caller may like to fill the space later.

void stash_pkt(const knot_pkt_t *pkt, const struct kr_query *qry, const struct kr_request *req, bool needs_pkt)
Stash the packet into cache (if suitable, etc.)

Parameters
• needs_pkt – we need the packet due to not stashing some RRs; see stash_rrset() for details

It assumes check_dname_for_lf().

int answer_from_pkt(kr_layer_t *ctx, knot_pkt_t *pkt, uint16_t type, const struct entry_h *eh, const void
*eh_bound, uint32_t new_ttl)

Try answering from packet cache, given an entry_h.

202 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

This assumes the TTL is OK and entry_h_consistent, but it may still return error. On success it handles all the
rest, incl. qry->flags.

static inline bool is_expiring(uint32_t orig_ttl, uint32_t new_ttl)
Record is expiring if it has less than 1% TTL (or less than 5s)

int32_t get_new_ttl(const struct entry_h *entry, const struct kr_query *qry, const knot_dname_t *owner, uint16_t
type, uint32_t now)

Returns signed result so you can inspect how much stale the RR is.

Note: : NSEC* uses zone name ATM; for NSEC3 the owner may not even be knowable.

Parameters
• owner – name for stale-serving decisions. You may pass NULL to disable stale.

• type – for stale-serving.

static inline int rdataset_dematerialize_size(const knot_rdataset_t *rds)
Compute size of serialized rdataset.

NULL is accepted as empty set.

static inline int rdataset_dematerialized_size(const uint8_t *data, uint16_t *rdataset_count)
Analyze the length of a dematerialized rdataset.

Note that in the data it’s KR_CACHE_RR_COUNT_SIZE and then this returned size.

void rdataset_dematerialize(const knot_rdataset_t *rds, uint8_t *restrict data)
Serialize an rdataset.

It may be NULL as short-hand for empty.

int entry2answer(struct answer *ans, int id, const struct entry_h *eh, const uint8_t *eh_bound, const
knot_dname_t *owner, uint16_t type, uint32_t new_ttl)

Materialize RRset + RRSIGs into ans->rrsets[id].

LATER(optim.): it’s slightly wasteful that we allocate knot_rrset_t for the packet

Returns
error code. They are all bad conditions and “guarded” by kresd’s assertions.

int pkt_renew(knot_pkt_t *pkt, const knot_dname_t *name, uint16_t type)
Prepare answer packet to be filled by RRs (without RR data in wire).

int pkt_append(knot_pkt_t *pkt, const struct answer_rrset *rrset, uint8_t rank)
Append RRset + its RRSIGs into the current section (shallow copy), with given rank.

Note: it works with empty set as well (skipped)

Note: pkt->wire is not updated in any way

Note: KNOT_CLASS_IN is assumed

19.6. API reference 203

Knot Resolver, Release 6.0.0a1

Note: Whole RRsets are put into the pseudo-packet; normal parsed packets would only contain single-RR sets.

knot_db_val_t key_NSEC1(struct key *k, const knot_dname_t *name, bool add_wildcard)
Construct a string key for for NSEC (1) predecessor-search.

Note: k->zlf_len is assumed to have been correctly set

Parameters
• add_wildcard – Act as if the name was extended by “*.”

int nsec1_encloser(struct key *k, struct answer *ans, const int sname_labels, int *clencl_labels, knot_db_val_t
*cover_low_kwz, knot_db_val_t *cover_hi_kwz, const struct kr_query *qry, struct kr_cache
*cache)

Closest encloser check for NSEC (1).

To understand the interface, see the call point.

Parameters
• k – space to store key + input: zname and zlf_len

Returns
0: success; >0: try other (NSEC3); <0: exit cache immediately.

int nsec1_src_synth(struct key *k, struct answer *ans, const knot_dname_t *clencl_name, knot_db_val_t
cover_low_kwz, knot_db_val_t cover_hi_kwz, const struct kr_query *qry, struct kr_cache
*cache)

Source of synthesis (SS) check for NSEC (1).

To understand the interface, see the call point.

Returns
0: continue; <0: exit cache immediately; AR_SOA: skip to adding SOA (SS was covered or
matched for NODATA).

knot_db_val_t key_NSEC3(struct key *k, const knot_dname_t *nsec3_name, const nsec_p_hash_t nsec_p_hash)
Construct a string key for for NSEC3 predecessor-search, from an NSEC3 name.

Note: k->zlf_len is assumed to have been correctly set

int nsec3_encloser(struct key *k, struct answer *ans, const int sname_labels, int *clencl_labels, const struct
kr_query *qry, struct kr_cache *cache)

TODO.

See nsec1_encloser(. . .)

int nsec3_src_synth(struct key *k, struct answer *ans, const knot_dname_t *clencl_name, const struct kr_query
*qry, struct kr_cache *cache)

TODO.

See nsec1_src_synth(. . .)

static inline uint16_t get_uint16(const void *address)

204 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

static inline uint8_t *knot_db_val_bound(knot_db_val_t val)
Useful pattern, especially as void-pointer arithmetic isn’t standard-compliant.

Variables

static const int NSEC_P_MAXLEN = sizeof(uint32_t) + 5 + 255

static const int NSEC3_HASH_LEN = 20
Hash is always SHA1; I see no plans to standardize anything else.

https://www.iana.org/assignments/dnssec-nsec3-parameters/dnssec-nsec3-parameters.xhtml#
dnssec-nsec3-parameters-3

static const int NSEC3_HASH_TXT_LEN = 32

struct entry_h

Public Members

uint32_t time
The time of inception.

uint32_t ttl
TTL at inception moment.

Assuming it fits into int32_t ATM.

uint8_t rank
See enum kr_rank.

bool is_packet
Negative-answer packet for insecure/bogus name.

bool has_optout
Only for packets; persisted DNSSEC_OPTOUT.

uint8_t _pad
We need even alignment for data now.

uint8_t data[]

struct nsec_p
#include <impl.h> NSEC* parameters for the chain.

19.6. API reference 205

https://www.iana.org/assignments/dnssec-nsec3-parameters/dnssec-nsec3-parameters.xhtml#dnssec-nsec3-parameters-3
https://www.iana.org/assignments/dnssec-nsec3-parameters/dnssec-nsec3-parameters.xhtml#dnssec-nsec3-parameters-3

Knot Resolver, Release 6.0.0a1

Public Members

const uint8_t *raw
Pointer to raw NSEC3 parameters; NULL for NSEC.

nsec_p_hash_t hash
Hash of raw, used for cache keys.

dnssec_nsec3_params_t libknot
Format for libknot; owns malloced memory!

struct key

Public Members

const knot_dname_t *zname
current zone name (points within qry->sname)

uint8_t zlf_len
length of current zone’s lookup format

uint16_t type
Corresponding key type; e.g.

NS for CNAME. Note: NSEC type is ambiguous (exact and range key).

uint8_t buf[KR_CACHE_KEY_MAXLEN]
The key data start at buf+1, and buf[0] contains some length.

For details see key_exact* and key_NSEC* functions.

struct entry_apex
#include <impl.h> Header of ‘E’ entry with ktype == NS.

Inside is private to ./entry_list.c

We store xNAME at NS type to lower the number of searches in closest_NS(). CNAME is only considered for
equal name, of course. We also store NSEC* parameters at NS type.

Public Members

bool has_ns

bool has_cname

bool has_dname

206 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

uint8_t pad_
1 byte + 2 bytes + x bytes would be weird; let’s do 2+2+x.

int8_t nsecs[ENTRY_APEX_NSECS_CNT]
We have two slots for NSEC* parameters.

This array describes how they’re filled; values: 0: none, 1: NSEC, 3: NSEC3.

Two slots are a compromise to smoothly handle normal rollovers (either changing NSEC3 parameters or
between NSEC and NSEC3).

uint8_t data[]

struct answer
#include <impl.h> Partially constructed answer when gathering RRsets from cache.

Public Members

int rcode
PKT_NODATA, etc.

struct nsec_p nsec_p
Don’t mix different NSEC* parameters in one answer.

knot_mm_t *mm
Allocator for rrsets.

struct answer.answer_rrset rrsets[1 + 1 + 3]
see AR_ANSWER and friends; only required records are filled

struct answer_rrset

Public Members

ranked_rr_array_entry_t set
set+rank for the main data

knot_rdataset_t sig_rds
RRSIG data, if any.

19.6. API reference 207

Knot Resolver, Release 6.0.0a1

19.6.3 Nameservers

Provides server selection API (see kr_server_selection) and functions common to both implementations.

Defines

KR_NS_TIMEOUT_ROW_DEAD

KR_NS_TIMEOUT_MIN_DEAD_TIMEOUT

KR_NS_TIMEOUT_RETRY_INTERVAL

Enums

enum kr_selection_error
These errors are to be reported as feedback to server selection.

See kr_server_selection::error for more details.

Values:

enumerator KR_SELECTION_OK

enumerator KR_SELECTION_QUERY_TIMEOUT

enumerator KR_SELECTION_TLS_HANDSHAKE_FAILED

enumerator KR_SELECTION_TCP_CONNECT_FAILED

enumerator KR_SELECTION_TCP_CONNECT_TIMEOUT

enumerator KR_SELECTION_REFUSED

enumerator KR_SELECTION_SERVFAIL

enumerator KR_SELECTION_FORMERR

enumerator KR_SELECTION_FORMERR_EDNS
inside an answer without an OPT record

enumerator KR_SELECTION_NOTIMPL
with an OPT record

enumerator KR_SELECTION_OTHER_RCODE

208 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

enumerator KR_SELECTION_MALFORMED

enumerator KR_SELECTION_MISMATCHED
Name or type mismatch.

enumerator KR_SELECTION_TRUNCATED

enumerator KR_SELECTION_DNSSEC_ERROR

enumerator KR_SELECTION_LAME_DELEGATION

enumerator KR_SELECTION_BAD_CNAME
Too long chain, or a cycle.

enumerator KR_SELECTION_NUMBER_OF_ERRORS
Leave this last, as it is used as array size.

enum kr_transport_protocol
Values:

enumerator KR_TRANSPORT_RESOLVE_A
Selected name with no IPv4 address, it has to be resolved first.

enumerator KR_TRANSPORT_RESOLVE_AAAA
Selected name with no IPv6 address, it has to be resolved first.

enumerator KR_TRANSPORT_UDP

enumerator KR_TRANSPORT_TCP

enumerator KR_TRANSPORT_TLS

Functions

void kr_server_selection_init(struct kr_query *qry)
Initialize the server selection API for qry.

The implementation is to be chosen based on qry->flags.

int kr_forward_add_target(struct kr_request *req, const struct sockaddr *sock)
Add forwarding target to request.

This is exposed to Lua in order to add forwarding targets to request. These are then shared by all the queries in
said request.

19.6. API reference 209

Knot Resolver, Release 6.0.0a1

struct kr_transport *select_transport(const struct choice choices[], int choices_len, const struct to_resolve
unresolved[], int unresolved_len, int timeouts, struct knot_mm *mempool,
bool tcp, size_t *choice_index)

Based on passed choices, choose the next transport.

Common function to both implementations (iteration and forwarding). The *_choose_transport functions
from selection_*.h preprocess the input for this one.

Parameters
• choices – Options to choose from, see struct above

• unresolved – Array of names that can be resolved (i.e. no A/AAAA record)

• timeouts – Number of timeouts that occurred in this query (used for exponential backoff)

• mempool – Memory context of current request

• tcp – Force TCP as transport protocol

• choice_index – [out] Optionally index of the chosen transport in the choices array.

Returns
Chosen transport (on mempool) or NULL when no choice is viable

void update_rtt(struct kr_query *qry, struct address_state *addr_state, const struct kr_transport *transport,
unsigned rtt)

Common part of RTT feedback mechanism.

Notes RTT to global cache.

void error(struct kr_query *qry, struct address_state *addr_state, const struct kr_transport *transport, enum
kr_selection_error sel_error)

Common part of error feedback mechanism.

struct rtt_state get_rtt_state(const uint8_t *ip, size_t len, struct kr_cache *cache)
Get RTT state from cache.

Returns default_rtt_state on unknown addresses.

Note that this opens a cache transaction which is usually closed by calling put_rtt_state, i.e. callee is respon-
sible for its closing (e.g. calling kr_cache_commit).

int put_rtt_state(const uint8_t *ip, size_t len, struct rtt_state state, struct kr_cache *cache)

void bytes_to_ip(uint8_t *bytes, size_t len, uint16_t port, union kr_sockaddr *dst)

uint8_t *ip_to_bytes(const union kr_sockaddr *src, size_t len)

void update_address_state(struct address_state *state, union kr_sockaddr *address, size_t address_len, struct
kr_query *qry)

bool no6_is_bad(void)

struct kr_transport
#include <selection.h> Output of the selection algorithm.

210 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

Public Members

knot_dname_t *ns_name
Set to “.” for forwarding targets.

union kr_sockaddr address

size_t address_len

enum kr_transport_protocol protocol

unsigned timeout
Timeout in ms to be set for UDP transmission.

bool timeout_capped
Timeout was capped to a maximum value based on the other candidates when choosing this transport.

The timeout therefore can be much lower than what we expect it to be. We basically probe the server for
a sudden network change but we expect it to timeout in most cases. We have to keep this in mind when
noting the timeout in cache.

bool deduplicated
True iff transport was set in worker.c:subreq_finalize, that means it may be different from the one originally
chosen one.

struct local_state

Public Members

int timeouts
Number of timeouts that occurred resolving this query.

bool truncated
Query was truncated, switch to TCP.

bool force_resolve
Force resolution of a new NS name (if possible) Done by selection.c:error in some cases.

bool force_udp
Used to work around auths with broken TCP.

void *private
Inner state of the implementation.

19.6. API reference 211

Knot Resolver, Release 6.0.0a1

struct kr_server_selection
#include <selection.h> Specifies a API for selecting transports and giving feedback on the choices.

The function pointers are to be used throughout resolver when some information about the transport is obtained.
E.g. RTT in worker.c or RCODE in iterate.c,. . .

Public Members

bool initialized

void (*choose_transport)(struct kr_query *qry, struct kr_transport **transport)
Puts a pointer to next transport of qry to transport .

Allocates new kr_transport in request’s mempool, chooses transport to be used for this query. Selection
may fail, so transport can be set to NULL.

Param transport
to be filled with pointer to the chosen transport or NULL on failure

void (*update_rtt)(struct kr_query *qry, const struct kr_transport *transport, unsigned rtt)
Report back the RTT of network operation for transport in ms.

void (*error)(struct kr_query *qry, const struct kr_transport *transport, enum kr_selection_error error)
Report back error encountered with the chosen transport.

See enum kr_selection

struct local_state *local_state

struct rtt_state
#include <selection.h> To be held per IP address in the global LMDB cache.

Public Members

int32_t srtt
Smoothed RTT, i.e.

an estimate of round-trip time.

int32_t variance
An estimate of RTT’s standard derivation (not variance).

int32_t consecutive_timeouts
Note: some TCP and TLS failures are also considered as timeouts.

uint64_t dead_since
Timestamp of pronouncing this IP bad based on KR_NS_TIMEOUT_ROW_DEAD.

212 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

struct address_state
#include <selection.h> To be held per IP address and locally “inside” query.

Public Members

unsigned int generation
Used to distinguish old and valid records in local_state; -1 means unusable IP.

struct rtt_state rtt_state

knot_dname_t *ns_name

bool tls_capable

int choice_array_index

int error_count

bool broken

int errors[KR_SELECTION_NUMBER_OF_ERRORS]

struct choice
#include <selection.h> Array of these is one of inputs for the actual selection algorithm (select_transport)

Public Members

union kr_sockaddr address

size_t address_len

struct address_state *address_state

uint16_t port
used to overwrite the port number; if zero, select_transport determines it.

struct to_resolve
#include <selection.h> Array of these is description of names to be resolved (i.e.

name without some address)

19.6. API reference 213

Knot Resolver, Release 6.0.0a1

Public Members

knot_dname_t *name

enum kr_transport_protocol type
Either KR_TRANSPORT_RESOLVE_A or KR_TRANSPORT_RESOLVE_AAAA is valid here.

Functions

int kr_zonecut_init(struct kr_zonecut *cut, const knot_dname_t *name, knot_mm_t *pool)
Populate root zone cut with SBELT.

Parameters
• cut – zone cut

• name –

• pool –

Returns
0 or error code

void kr_zonecut_deinit(struct kr_zonecut *cut)
Clear the structure and free the address set.

Parameters
• cut – zone cut

void kr_zonecut_move(struct kr_zonecut *to, const struct kr_zonecut *from)

Move a zonecut, transferring ownership of any pointed-to memory.

Parameters
• to – the target - it gets deinit-ed

• from – the source - not modified, but shouldn’t be used afterward

void kr_zonecut_set(struct kr_zonecut *cut, const knot_dname_t *name)
Reset zone cut to given name and clear address list.

Note: This clears the address list even if the name doesn’t change. TA and DNSKEY don’t change.

Parameters
• cut – zone cut to be set

• name – new zone cut name

int kr_zonecut_copy(struct kr_zonecut *dst, const struct kr_zonecut *src)
Copy zone cut, including all data.

Does not copy keys and trust anchor.

Note: addresses for names in src get replaced and others are left as they were.

214 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

Parameters
• dst – destination zone cut

• src – source zone cut

Returns
0 or an error code; If it fails with kr_error(ENOMEM), it may be in a half-filled state, but it’s
safe to deinit. . .

int kr_zonecut_copy_trust(struct kr_zonecut *dst, const struct kr_zonecut *src)
Copy zone trust anchor and keys.

Parameters
• dst – destination zone cut

• src – source zone cut

Returns
0 or an error code

int kr_zonecut_add(struct kr_zonecut *cut, const knot_dname_t *ns, const void *data, int len)
Add address record to the zone cut.

The record will be merged with existing data, it may be either A/AAAA type.

Parameters
• cut – zone cut to be populated

• ns – nameserver name

• data – typically knot_rdata_t::data

• len – typically knot_rdata_t::len

Returns
0 or error code

int kr_zonecut_del(struct kr_zonecut *cut, const knot_dname_t *ns, const void *data, int len)
Delete nameserver/address pair from the zone cut.

Parameters
• cut –

• ns – name server name

• data – typically knot_rdata_t::data

• len – typically knot_rdata_t::len

Returns
0 or error code

int kr_zonecut_del_all(struct kr_zonecut *cut, const knot_dname_t *ns)
Delete all addresses associated with the given name.

Parameters
• cut –

• ns – name server name

Returns
0 or error code

19.6. API reference 215

Knot Resolver, Release 6.0.0a1

pack_t *kr_zonecut_find(struct kr_zonecut *cut, const knot_dname_t *ns)
Find nameserver address list in the zone cut.

Note: This can be used for membership test, a non-null pack is returned if the nameserver name exists.

Parameters
• cut –

• ns – name server name

Returns
pack of addresses or NULL

int kr_zonecut_set_sbelt(struct kr_context *ctx, struct kr_zonecut *cut)
Populate zone cut with a root zone using SBELT :rfc:1034

Parameters
• ctx – resolution context (to fetch root hints)

• cut – zone cut to be populated

Returns
0 or error code

int kr_zonecut_find_cached(struct kr_context *ctx, struct kr_zonecut *cut, const knot_dname_t *name, const
struct kr_query *qry, bool *restrict secured)

Populate zone cut address set from cache.

The size is limited to avoid possibility of doing too much CPU work.

Parameters
• ctx – resolution context (to fetch data from LRU caches)

• cut – zone cut to be populated

• name – QNAME to start finding zone cut for

• qry – query for timestamp and stale-serving decisions

• secured – set to true if want secured zone cut, will return false if it is provably insecure

Returns
0 or error code (ENOENT if it doesn’t find anything)

bool kr_zonecut_is_empty(struct kr_zonecut *cut)
Check if any address is present in the zone cut.

Parameters
• cut – zone cut to check

Returns
true/false

struct kr_zonecut
#include <zonecut.h> Current zone cut representation.

216 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

Public Members

knot_dname_t *name
Zone cut name.

knot_rrset_t *key
Zone cut DNSKEY.

knot_rrset_t *trust_anchor
Current trust anchor.

struct kr_zonecut *parent
Parent zone cut.

trie_t *nsset
Map of nameserver => address_set (pack_t).

knot_mm_t *pool
Memory pool.

19.6.4 Modules

Module API definition and functions for (un)loading modules.

Defines

KR_MODULE_EXPORT(module)
Export module API version (place this at the end of your module).

Parameters
• module – module name (e.g. policy)

KR_MODULE_API

Typedefs

typedef int (*kr_module_init_cb)(struct kr_module*)

19.6. API reference 217

Knot Resolver, Release 6.0.0a1

Functions

int kr_module_load(struct kr_module *module, const char *name, const char *path)
Load a C module instance into memory.

And call its init().

Parameters
• module – module structure. Will be overwritten except for ->data on success.

• name – module name

• path – module search path

Returns
0 or an error

void kr_module_unload(struct kr_module *module)
Unload module instance.

Note: currently used even for lua modules

Parameters
• module – module structure

kr_module_init_cb kr_module_get_embedded(const char *name)
Get embedded module’s init function by name (or NULL).

struct kr_module
#include <module.h> Module representation.

The five symbols (init, . . .) may be defined by the module as name_init(), etc; all are optional and missing
symbols are represented as NULLs;

Public Members

char *name

int (*init)(struct kr_module *self)
Constructor.

Called after loading the module.

Return
error code. Lua modules: not populated, called via lua directly.

int (*deinit)(struct kr_module *self)
Destructor.

Called before unloading the module.

Return
error code.

218 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

int (*config)(struct kr_module *self, const char *input)
Configure with encoded JSON (NULL if missing).

Return
error code. Lua modules: not used and not useful from C. When called from lua, input is
JSON, like for kr_prop_cb.

const kr_layer_api_t *layer
Packet processing API specs.

May be NULL. See docs on that type. Owned by the module code.

const struct kr_prop *props
List of properties.

May be NULL. Terminated by { NULL, NULL, NULL }. Lua modules: not used and not useful.

void *lib
dlopen() handle; RTLD_DEFAULT for embedded modules; NULL for lua modules.

void *data
Custom data context.

struct kr_prop
#include <module.h> Module property (named callable).

Public Members

kr_prop_cb *cb

const char *name

const char *info

Typedefs

typedef struct kr_layer kr_layer_t
Packet processing context.

typedef struct kr_layer_api kr_layer_api_t

19.6. API reference 219

Knot Resolver, Release 6.0.0a1

Enums

enum kr_layer_state
Layer processing states.

Only one value at a time (but see TODO).

Each state represents the state machine transition, and determines readiness for the next action. See struct
kr_layer_api for the actions.

TODO: the cookie module sometimes sets (_FAIL | _DONE) on purpose (!)

Values:

enumerator KR_STATE_CONSUME
Consume data.

enumerator KR_STATE_PRODUCE
Produce data.

enumerator KR_STATE_DONE
Finished successfully or a special case: in CONSUME phase this can be used (by iterator) to do a transition
to PRODUCE phase again, in which case the packet wasn’t accepted for some reason.

enumerator KR_STATE_FAIL
Error.

enumerator KR_STATE_YIELD
Paused, waiting for a sub-query.

Functions

static inline bool kr_state_consistent(enum kr_layer_state s)
Check that a kr_layer_state makes sense.

We’re not very strict ATM.

struct kr_layer
#include <layer.h> Packet processing context.

Public Members

int state
The current state; bitmap of enum kr_layer_state.

struct kr_request *req
The corresponding request.

220 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

const struct kr_layer_api *api

knot_pkt_t *pkt
In glue for lua kr_layer_api it’s used to pass the parameter.

struct sockaddr *dst
In glue for checkout layer it’s used to pass the parameter.

bool is_stream
In glue for checkout layer it’s used to pass the parameter.

struct kr_layer_api
#include <layer.h> Packet processing module API.

All functions return the new kr_layer_state.

Lua modules are allowed to return nil/nothing, meaning the state shall not change.

Public Members

int (*begin)(kr_layer_t *ctx)
Start of processing the DNS request.

int (*reset)(kr_layer_t *ctx)

int (*finish)(kr_layer_t *ctx)
Paired to begin, called both on successes and failures.

int (*consume)(kr_layer_t *ctx, knot_pkt_t *pkt)
Process an answer from upstream or from cache.

Lua API: call is omitted iff (state & KR_STATE_FAIL).

int (*produce)(kr_layer_t *ctx, knot_pkt_t *pkt)
Produce either an answer to the request or a query for upstream (or fail).

Lua API: call is omitted iff (state & KR_STATE_FAIL).

int (*checkout)(kr_layer_t *ctx, knot_pkt_t *packet, struct sockaddr *dst, int type)
Finalises the outbound query packet with the knowledge of the IP addresses.

The checkout layer doesn’t persist the state, so canceled subrequests don’t affect the resolution or rest of the
processing. Lua API: call is omitted iff (state & KR_STATE_FAIL).

int (*answer_finalize)(kr_layer_t *ctx)
Finalises the answer.

Last chance to affect what will get into the answer, including EDNS. Not called if the packet is being
dropped.

19.6. API reference 221

Knot Resolver, Release 6.0.0a1

void *data
The C module can store anything in here.

int cb_slots[]
Internal to .

/daemon/ffimodule.c.

struct kr_layer_pickle
#include <layer.h> Pickled layer state (api, input, state).

Public Members

struct kr_layer_pickle *next

const struct kr_layer_api *api

knot_pkt_t *pkt

unsigned state

19.6.5 Utilities

Defines

KR_STRADDR_MAXLEN

Maximum length (excluding null-terminator) of a presentation-form address returned by kr_straddr.

kr_require(expression)
Assert() but always, regardless of -DNDEBUG.

See also kr_assert().

kr_fails_assert(expression)
Check an assertion that’s recoverable.

Return the true if it fails and needs handling.

If the check fails, optionally fork()+abort() to generate coredump and continue running in parent process. Return
value must be handled to ensure safe recovery from error. Use kr_require() for unrecoverable checks. The errno
variable is not mangled, e.g. you can: if (kr_fails_assert(. . .)) return errno;

kr_assert(expression)
Kresd assertion without a return value.

These can be turned on or off, for mandatory unrecoverable checks, use kr_require(). For recoverable checks,
use kr_fails_assert().

KR_DNAME_GET_STR(dname_str, dname)

222 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

KR_RRTYPE_GET_STR(rrtype_str, rrtype)

KR_RRKEY_LEN

SWAP(x, y)
Swap two places.

Note: the parameters need to be without side effects.

Typedefs

typedef void (*trace_callback_f)(struct kr_request *request)
Callback for request events.

typedef void (*trace_log_f)(const struct kr_request *request, const char *msg)
Callback for request logging handler.

Param msg
[in] Log message. Pointer is not valid after handler returns.

typedef struct kr_http_header_array_entry kr_http_header_array_entry_t

typedef see_source_code kr_http_header_array_t
Array of HTTP headers for DoH.

typedef struct timespec kr_timer_t
Timer, i.e stop-watch.

Functions

void kr_fail(bool is_fatal, const char *expr, const char *func, const char *file, int line)
Use kr_require(), kr_assert() or kr_fails_assert() instead of directly this function.

static inline bool kr_assert_func(bool result, const char *expr, const char *func, const char *file, int line)
Use kr_require(), kr_assert() or kr_fails_assert() instead of directly this function.

static inline int strcmp_p(const void *p1, const void *p2)
A strcmp() variant directly usable for qsort() on an array of strings.

static inline void get_workdir(char *out, size_t len)
Get current working directory with fallback value.

char *kr_strcatdup(unsigned n, ...)
Concatenate N strings.

char *kr_absolutize_path(const char *dirname, const char *fname)
Construct absolute file path, without resolving symlinks.

Returns
malloc-ed string or NULL (+errno in that case)

19.6. API reference 223

Knot Resolver, Release 6.0.0a1

void kr_rnd_buffered(void *data, unsigned int size)
You probably want kr_rand_* convenience functions instead.

This is a buffered version of gnutls_rnd(GNUTLS_RND_NONCE, ..)

inline uint64_t kr_rand_bytes(unsigned int size)
Return a few random bytes.

static inline bool kr_rand_coin(unsigned int nomin, unsigned int denomin)
Throw a pseudo-random coin, succeeding approximately with probability nomin/denomin.

• low precision, only one byte of randomness (or none with extreme parameters)

• tip: use !kr_rand_coin() to get the complementary probability

int kr_memreserve(void *baton, void **mem, size_t elm_size, size_t want, size_t *have)
Memory reservation routine for knot_mm_t.

int kr_pkt_recycle(knot_pkt_t *pkt)

int kr_pkt_clear_payload(knot_pkt_t *pkt)

int kr_pkt_put(knot_pkt_t *pkt, const knot_dname_t *name, uint32_t ttl, uint16_t rclass, uint16_t rtype, const
uint8_t *rdata, uint16_t rdlen)

Construct and put record to packet.

void kr_pkt_make_auth_header(knot_pkt_t *pkt)
Set packet header suitable for authoritative answer.

(for policy module)

static inline knot_dname_t *kr_pkt_qname_raw(const knot_pkt_t *pkt)
Get pointer to the in-header QNAME.

That’s normally not lower-cased. However, when receiving packets from upstream we xor-apply the secret during
packet-parsing, so it would get lower-cased after that point if the case was right.

const char *kr_inaddr(const struct sockaddr *addr)
Address bytes for given family.

int kr_inaddr_family(const struct sockaddr *addr)
Address family.

int kr_inaddr_len(const struct sockaddr *addr)
Address length for given family, i.e.

sizeof(struct in*_addr).

int kr_sockaddr_len(const struct sockaddr *addr)
Sockaddr length for given family, i.e.

sizeof(struct sockaddr_in*).

ssize_t kr_sockaddr_key(struct kr_sockaddr_key_storage *dst, const struct sockaddr *addr)
Creates a packed structure from the specified addr, safe for use as a key in containers like trie_t, and writes it
into dst.

On success, returns the actual length of the key.

Returns kr_error(EAFNOSUPPORT) if the family of addr is unsupported.

224 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

struct sockaddr *kr_sockaddr_from_key(struct sockaddr_storage *dst, const char *key)
Creates a struct sockaddr from the specified key created using the kr_sockaddr_key() function.

bool kr_sockaddr_key_same_addr(const char *key_a, const char *key_b)
Checks whether the two keys represent the same address; does NOT compare the ports.

int kr_sockaddr_cmp(const struct sockaddr *left, const struct sockaddr *right)
Compare two given sockaddr.

return 0 - addresses are equal, error code otherwise.

uint16_t kr_inaddr_port(const struct sockaddr *addr)
Port.

void kr_inaddr_set_port(struct sockaddr *addr, uint16_t port)
Set port.

int kr_inaddr_str(const struct sockaddr *addr, char *buf, size_t *buflen)
Write string representation for given address as “<addr>#<port>”.

Parameters
• addr – [in] the raw address

• buf – [out] the buffer for output string

• buflen – [inout] the available(in) and utilized(out) length, including \0

int kr_ntop_str(int family, const void *src, uint16_t port, char *buf, size_t *buflen)
Write string representation for given address as “<addr>#<port>”.

It’s the same as kr_inaddr_str(), but the input address is input in native format like for inet_ntop() (4 or 16 bytes)
and port must be separate parameter.

char *kr_straddr(const struct sockaddr *addr)

int kr_straddr_family(const char *addr)
Return address type for string.

int kr_family_len(int family)
Return address length in given family (struct in*_addr).

struct sockaddr *kr_straddr_socket(const char *addr, int port, knot_mm_t *pool)
Create a sockaddr* from string+port representation.

Also accepts IPv6 link-local and AF_UNIX starting with “/” (ignoring port)

int kr_straddr_subnet(void *dst, const char *addr)
Parse address and return subnet length (bits).

Warning: ‘dst’ must be at least sizeof(struct in6_addr) long.

int kr_straddr_join(const char *addr, uint16_t port, char *buf, size_t *buflen)
Formats ip address and port in “addr#port” format.

and performs validation.

Note: Port always formatted as five-character string with leading zeros.

19.6. API reference 225

Knot Resolver, Release 6.0.0a1

Returns
kr_error(EINVAL) - addr or buf is NULL or buflen is 0 or addr doesn’t contain a valid ip address
kr_error(ENOSP) - buflen is too small

int kr_bitcmp(const char *a, const char *b, int bits)
Compare memory bitwise.

The semantics is “the same” as for memcmp(). The partial byte is considered with more-significant bits first, so
this is e.g. suitable for comparing IP prefixes.

void kr_bitmask(unsigned char *a, size_t a_len, int bits)
Masks bits.

The specified number of bits in a from the left (network order) will remain their original value, while the rest
will be set to zero. This is useful for storing network addresses in a trie.

static inline bool kr_sockaddr_link_local(const struct sockaddr *addr)
Check whether addr points to an AF_INET6 address and whether the address is link-local.

int kr_rrkey(char *key, uint16_t class, const knot_dname_t *owner, uint16_t type, uint16_t additional)
Create unique null-terminated string key for RR.

Parameters
• key – Destination buffer for key size, MUST be KR_RRKEY_LEN or larger.

• class – RR class.

• owner – RR owner name.

• type – RR type.

• additional – flags (for instance can be used for storing covered type when RR type is
RRSIG).

Returns
key length if successful or an error

int kr_ranked_rrarray_add(ranked_rr_array_t *array, const knot_rrset_t *rr, uint8_t rank, bool to_wire, uint32_t
qry_uid, knot_mm_t *pool)

Add RRSet copy to a ranked RR array.

To convert to standard RRs inside, you need to call _finalize() afterwards, and the memory of rr->rrs.rdata has
to remain until then.

Returns
array index (>= 0) or error code (< 0)

int kr_ranked_rrarray_finalize(ranked_rr_array_t *array, uint32_t qry_uid, knot_mm_t *pool)
Finalize in_progress sets - all with matching qry_uid.

int kr_ranked_rrarray_set_wire(ranked_rr_array_t *array, bool to_wire, uint32_t qry_uid, bool check_dups,
bool (*extraCheck)(const ranked_rr_array_entry_t*))

char *kr_pkt_text(const knot_pkt_t *pkt)

Returns
Newly allocated string representation of packet. Caller has to free() returned string.

char *kr_rrset_text(const knot_rrset_t *rr)

226 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

static inline char *kr_dname_text(const knot_dname_t *name)

static inline char *kr_rrtype_text(const uint16_t rrtype)

char *kr_module_call(struct kr_context *ctx, const char *module, const char *prop, const char *input)
Call module property.

static inline uint16_t kr_rrset_type_maysig(const knot_rrset_t *rr)
Return the (covered) type of an nonempty RRset.

uint64_t kr_now()
The current time in monotonic milliseconds.

Note: it may be outdated in case of long callbacks; see uv_now().

void kr_uv_free_cb(uv_handle_t *handle)
Call free(handle->data); it’s useful e.g.

as a callback in uv_close().

int knot_dname_lf2wire(knot_dname_t *dst, uint8_t len, const uint8_t *lf)
Convert name from lookup format to wire.

See knot_dname_lf

Note: len bytes are read and len+1 are written with normal LF, but it’s also allowed that the final zero byte is
omitted in LF.

Returns
the number of bytes written (>0) or error code (<0)

static inline int kr_dname_lf(uint8_t *dst, const knot_dname_t *src, bool add_wildcard)
Patched knot_dname_lf.

LF for “.” has length zero instead of one, for consistency. (TODO: consistency?)

Note: packet is always NULL

Parameters
• add_wildcard – append the wildcard label

static inline void kr_timer_start(kr_timer_t *start)
Start, i.e.

set the reference point.

static inline double kr_timer_elapsed(kr_timer_t *start)
Get elapsed time in floating-point seconds.

static inline uint64_t kr_timer_elapsed_us(kr_timer_t *start)
Get elapsed time in micro-seconds.

19.6. API reference 227

Knot Resolver, Release 6.0.0a1

const char *kr_strptime_diff(const char *format, const char *time1_str, const char *time0_str, double *diff)
Difference between two calendar times specified as strings.

Parameters
• format – [in] format for strptime

• diff – [out] result from C difftime(time1, time0)

void kr_rrset_init(knot_rrset_t *rrset, knot_dname_t *owner, uint16_t type, uint16_t rclass, uint32_t ttl)

bool kr_pkt_has_wire(const knot_pkt_t *pkt)

bool kr_pkt_has_dnssec(const knot_pkt_t *pkt)

uint16_t kr_pkt_qclass(const knot_pkt_t *pkt)

uint16_t kr_pkt_qtype(const knot_pkt_t *pkt)

uint32_t kr_rrsig_sig_inception(const knot_rdata_t *rdata)

uint32_t kr_rrsig_sig_expiration(const knot_rdata_t *rdata)

uint16_t kr_rrsig_type_covered(const knot_rdata_t *rdata)

time_t kr_file_mtime(const char *fname)

long long kr_fssize(const char *path)
Return filesystem size in bytes.

const char *kr_dirent_name(const struct dirent *de)
Simply return de->dname.

(useful from Lua)

Variables

static const size_t KR_PKT_SIZE_NOWIRE = -1
When knot_pkt is passed from cache without ->wire, this is the ->size.

bool kr_dbg_assertion_abort
Whether kr_assert() and kr_fails_assert() checks should abort.

int kr_dbg_assertion_fork
How often kr_assert() should fork the process before issuing abort (if configured).

This can be useful for debugging rare edge-cases in production. if (kr_debug_assertion_abort &&
kr_debug_assertion_fork), it is possible to both obtain a coredump (from forked child) and recover from the
non-fatal error in the parent process.

== 0 (false): no forking

0: minimum delay between forks

(in milliseconds, each instance separately, randomized +-25%) < 0: no rate-limiting (not recommended)

228 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

const knot_dump_style_t KR_DUMP_STYLE_DEFAULT
Style used by the kr_*_text() functions.

struct kr_sockaddr_key_storage
#include <utils.h> Used for reserving enough space for the kr_sockaddr_key function output.

Public Members

char bytes[sizeof(struct sockaddr_storage)]

struct kr_http_header_array_entry

Public Members

char *name

char *value

union kr_sockaddr
#include <utils.h> Simple storage for IPx address and their ports or AF_UNSPEC.

Public Members

struct sockaddr ip

struct sockaddr_in ip4

struct sockaddr_in6 ip6

union kr_in_addr
#include <utils.h> Simple storage for IPx addresses.

Public Members

struct in_addr ip4

struct in6_addr ip6

19.6. API reference 229

Knot Resolver, Release 6.0.0a1

Defines

KR_EXPORT

KR_CONST

KR_PURE

KR_NORETURN

KR_COLD

KR_PRINTF(n)

kr_ok()

kr_strerror(x)

Functions

static inline int kr_error(int x)

19.6.6 Generics library

This small collection of “generics” was born out of frustration that I couldn’t find no such thing for C. It’s either bloated,
has poor interface, null-checking is absent or doesn’t allow custom allocation scheme. BSD-licensed (or compatible)
code is allowed here, as long as it comes with a test case in tests/test_generics.c.

• array - a set of simple macros to make working with dynamic arrays easier.

• queue - a FIFO + LIFO queue.

• pack - length-prefixed list of objects (i.e. array-list).

• lru - LRU-like hash table

• trie - a trie-based key-value map, taken from knot-dns

array

A set of simple macros to make working with dynamic arrays easier.

MIN(array_push(arr, val), other)

May evaluate the code twice, leading to unexpected behaviour. This is a price to pay for the absence of proper generics.

Example usage:

230 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

array_t(const char*) arr;
array_init(arr);

// Reserve memory in advance
if (array_reserve(arr, 2) < 0) {

return ENOMEM;
}

// Already reserved, cannot fail
array_push(arr, "princess");
array_push(arr, "leia");

// Not reserved, may fail
if (array_push(arr, "han") < 0) {

return ENOMEM;
}

// It does not hide what it really is
for (size_t i = 0; i < arr.len; ++i) {

printf("%s\n", arr.at[i]);
}

// Random delete
array_del(arr, 0);

Note: The C has no generics, so it is implemented mostly using macros. Be aware of that, as direct usage of the
macros in the evaluating macros may lead to different expectations:

Defines

array_t(type)
Declare an array structure.

array_init(array)
Zero-initialize the array.

array_clear(array)
Free and zero-initialize the array (plain malloc/free).

array_clear_mm(array, free, baton)
Make the array empty and free pointed-to memory.

Mempool usage: pass mm_free and a knot_mm_t* .

array_reserve(array, n)
Reserve capacity for at least n elements.

Returns
0 if success, <0 on failure

array_reserve_mm(array, n, reserve, baton)
Reserve capacity for at least n elements.

Mempool usage: pass kr_memreserve and a knot_mm_t* .

19.6. API reference 231

Knot Resolver, Release 6.0.0a1

Returns
0 if success, <0 on failure

array_push_mm(array, val, reserve, baton)
Push value at the end of the array, resize it if necessary.

Mempool usage: pass kr_memreserve and a knot_mm_t* .

Note: May fail if the capacity is not reserved.

Returns
element index on success, <0 on failure

array_push(array, val)
Push value at the end of the array, resize it if necessary (plain malloc/free).

Note: May fail if the capacity is not reserved.

Returns
element index on success, <0 on failure

array_pop(array)
Pop value from the end of the array.

array_del(array, i)
Remove value at given index.

Returns
0 on success, <0 on failure

array_tail(array)
Return last element of the array.

Warning: Undefined if the array is empty.

Functions

static inline size_t array_next_count(size_t elm_size, size_t want, size_t have)
Choose array length when it overflows.

static inline int array_std_reserve(void *baton, void **mem, size_t elm_size, size_t want, size_t *have)

static inline void array_std_free(void *baton, void *p)

232 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

queue

A queue, usable for FIFO and LIFO simultaneously.

Both the head and tail of the queue can be accessed and pushed to, but only the head can be popped from.

Example usage:

// define new queue type, and init a new queue instance
typedef queue_t(int) queue_int_t;
queue_int_t q;
queue_init(q);
// do some operations
queue_push(q, 1);
queue_push(q, 2);
queue_push(q, 3);
queue_push(q, 4);
queue_pop(q);
kr_require(queue_head(q) == 2);
kr_require(queue_tail(q) == 4);

// you may iterate
typedef queue_it_t(int) queue_it_int_t;
for (queue_it_int_t it = queue_it_begin(q); !queue_it_finished(it);

queue_it_next(it)) {
++queue_it_val(it);

}
kr_require(queue_tail(q) == 5);

queue_push_head(q, 0);
++queue_tail(q);
kr_require(queue_tail(q) == 6);
// free it up
queue_deinit(q);

// you may use dynamic allocation for the type itself
queue_int_t *qm = malloc(sizeof(queue_int_t));
queue_init(*qm);
queue_deinit(*qm);
free(qm);

Note: The implementation uses a singly linked list of blocks (“chunks”) where each block stores an array of values
(for better efficiency).

19.6. API reference 233

Knot Resolver, Release 6.0.0a1

Defines

queue_t(type)
The type for queue, parametrized by value type.

queue_init(q)
Initialize a queue.

You can malloc() it the usual way.

queue_deinit(q)
De-initialize a queue: make it invalid and free any inner allocations.

queue_push(q, data)
Push data to queue’s tail.

(Type-safe version; use _impl() otherwise.)

queue_push_head(q, data)
Push data to queue’s head.

(Type-safe version; use _impl() otherwise.)

queue_pop(q)
Remove the element at the head.

The queue must not be empty.

queue_head(q)
Return a “reference” to the element at the head (it’s an L-value).

The queue must not be empty.

queue_tail(q)
Return a “reference” to the element at the tail (it’s an L-value).

The queue must not be empty.

queue_len(q)
Return the number of elements in the queue (very efficient).

queue_it_t(type)
Type for queue iterator, parametrized by value type.

It’s a simple structure that owns no other resources. You may NOT use it after doing any push or pop (without
_begin again).

queue_it_begin(q)
Initialize a queue iterator at the head of the queue.

If you use this in assignment (instead of initialization), you will unfortunately need to add corresponding type-cast
in front. Beware: there’s no type-check between queue and iterator!

queue_it_val(it)
Return a “reference” to the current element (it’s an L-value) .

queue_it_finished(it)
Test if the iterator has gone past the last element.

If it has, you may not use _val or _next.

234 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

queue_it_next(it)
Advance the iterator to the next element.

pack

A length-prefixed list of objects, also an array list.

Each object is prefixed by item length, unlike array this structure permits variable-length data. It is also equivalent to
forward-only list backed by an array.

Todo:
If some mistake happens somewhere, the access may end up in an infinite loop. (equality comparison on pointers)

Example usage:

pack_t pack;
pack_init(pack);

// Reserve 2 objects, 6 bytes total
pack_reserve(pack, 2, 4 + 2);

// Push 2 objects
pack_obj_push(pack, U8("jedi"), 4)
pack_obj_push(pack, U8("\xbe\xef"), 2);

// Iterate length-value pairs
uint8_t *it = pack_head(pack);
while (it != pack_tail(pack)) {

uint8_t *val = pack_obj_val(it);
it = pack_obj_next(it);

}

// Remove object
pack_obj_del(pack, U8("jedi"), 4);

pack_clear(pack);

Note: Maximum object size is 2^16 bytes, see pack_objlen_t

Defines

pack_init(pack)
Zero-initialize the pack.

pack_clear(pack)
Make the pack empty and free pointed-to memory (plain malloc/free).

pack_clear_mm(pack, free, baton)
Make the pack empty and free pointed-to memory.

Mempool usage: pass mm_free and a knot_mm_t* .

19.6. API reference 235

Knot Resolver, Release 6.0.0a1

pack_reserve(pack, objs_count, objs_len)
Reserve space for additional objects in the pack (plain malloc/free).

Returns
0 if success, <0 on failure

pack_reserve_mm(pack, objs_count, objs_len, reserve, baton)
Reserve space for additional objects in the pack.

Mempool usage: pass kr_memreserve and a knot_mm_t* .

Returns
0 if success, <0 on failure

pack_head(pack)
Return pointer to first packed object.

Recommended way to iterate: for (uint8_t *it = pack_head(pack); it != pack_tail(pack); it = pack_obj_next(it))

pack_tail(pack)
Return pack end pointer.

Typedefs

typedef uint16_t pack_objlen_t
Packed object length type.

typedef see_source_code pack_t
Pack is defined as an array of bytes.

Functions

static inline pack_objlen_t pack_obj_len(uint8_t *it)
Return packed object length.

static inline uint8_t *pack_obj_val(uint8_t *it)
Return packed object value.

static inline uint8_t *pack_obj_next(uint8_t *it)
Return pointer to next packed object.

static inline uint8_t *pack_last(pack_t pack)
Return pointer to the last packed object.

static inline int pack_obj_push(pack_t *pack, const uint8_t *obj, pack_objlen_t len)
Push object to the end of the pack.

Returns
0 on success, negative number on failure

static inline uint8_t *pack_obj_find(pack_t *pack, const uint8_t *obj, pack_objlen_t len)
Returns a pointer to packed object.

Returns
pointer to packed object or NULL

236 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

static inline int pack_obj_del(pack_t *pack, const uint8_t *obj, pack_objlen_t len)
Delete object from the pack.

Returns
0 on success, negative number on failure

static inline int pack_clone(pack_t **dst, const pack_t *src, knot_mm_t *pool)
Clone a pack, replacing destination pack; (*dst == NULL) is valid input.

Returns
kr_error(ENOMEM) on allocation failure.

lru

A lossy cache.

Example usage:

// Define new LRU type
typedef lru_t(int) lru_int_t;

// Create LRU
lru_int_t *lru;
lru_create(&lru, 5, NULL, NULL);

// Insert some values
int *pi = lru_get_new(lru, "luke", strlen("luke"), NULL);
if (pi)

*pi = 42;
pi = lru_get_new(lru, "leia", strlen("leia"), NULL);
if (pi)

*pi = 24;

// Retrieve values
int *ret = lru_get_try(lru, "luke", strlen("luke"), NULL);
if (!ret) printf("luke dropped out!\n");

else printf("luke's number is %d\n", *ret);

char *enemies[] = {"goro", "raiden", "subzero", "scorpion"};
for (int i = 0; i < 4; ++i) {

int *val = lru_get_new(lru, enemies[i], strlen(enemies[i]), NULL);
if (val)

*val = i;
}

// We're done
lru_free(lru);

Note: The implementation tries to keep frequent keys and avoid others, even if “used recently”, so it may refuse to
store it on lru_get_new(). It uses hashing to split the problem pseudo-randomly into smaller groups, and within each
it tries to approximate relative usage counts of several most frequent keys/hashes. This tracking is done for more keys
than those that are actually stored.

19.6. API reference 237

Knot Resolver, Release 6.0.0a1

Defines

lru_t(type)
The type for LRU, parametrized by value type.

lru_create(ptable, max_slots, mm_ctx_array, mm_ctx)
Allocate and initialize an LRU with default associativity.

The real limit on the number of slots can be a bit larger but less than double.

Note: The pointers to memory contexts need to remain valid during the whole life of the structure (or be NULL).

Parameters
• ptable – pointer to a pointer to the LRU

• max_slots – number of slots

• mm_ctx_array – memory context to use for the huge array, NULL for default If you pass
your own, it needs to produce CACHE_ALIGNED allocations (ubsan).

• mm_ctx – memory context to use for individual key-value pairs, NULL for default

lru_free(table)
Free an LRU created by lru_create (it can be NULL).

lru_reset(table)
Reset an LRU to the empty state (but preserve any settings).

lru_get_try(table, key_, len_)
Find key in the LRU and return pointer to the corresponding value.

Parameters
• table – pointer to LRU

• key_ – lookup key

• len_ – key length

Returns
pointer to data or NULL if not found

lru_get_new(table, key_, len_, is_new)
Return pointer to value, inserting if needed (zeroed).

Parameters
• table – pointer to LRU

• key_ – lookup key

• len_ – key lengthkeys

• is_new – pointer to bool to store result of operation (true if entry is newly added, false
otherwise; can be NULL).

Returns
pointer to data or NULL (can be even if memory could be allocated!)

238 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

lru_apply(table, function, baton)
Apply a function to every item in LRU.

Parameters
• table – pointer to LRU

• function – enum lru_apply_do (*function)(const char *key, uint len, val_type *val, void
*baton) See enum lru_apply_do for the return type meanings.

• baton – extra pointer passed to each function invocation

lru_capacity(table)
Return the real capacity - maximum number of keys holdable within.

Parameters
• table – pointer to LRU

Enums

enum lru_apply_do
Possible actions to do with an element.

Values:

enumerator LRU_APPLY_DO_NOTHING

enumerator LRU_APPLY_DO_EVICT

trie

Typedefs

typedef void *trie_val_t
Native API of QP-tries:

• keys are char strings, not necessarily zero-terminated, the structure copies the contents of the passed keys

• values are void* pointers, typically you get an ephemeral pointer to it

• key lengths are limited by 2^32-1 ATM

XXX EDITORS: trie.{h,c} are synced from https://gitlab.nic.cz/knot/knot-dns/tree/68352fc969/src/contrib/
qp-trie only with simple adjustments, mostly include lines, KR_EXPORT and assertions.

Element value.

typedef struct trie trie_t
Opaque structure holding a QP-trie.

typedef struct trie_it trie_it_t
Opaque type for holding a QP-trie iterator.

19.6. API reference 239

https://gitlab.nic.cz/knot/knot-dns/tree/68352fc969/src/contrib/qp-trie
https://gitlab.nic.cz/knot/knot-dns/tree/68352fc969/src/contrib/qp-trie

Knot Resolver, Release 6.0.0a1

Functions

trie_t *trie_create(knot_mm_t *mm)

Create a trie instance. Pass NULL to use malloc+free.

void trie_free(trie_t *tbl)
Free a trie instance.

void trie_clear(trie_t *tbl)
Clear a trie instance (make it empty).

size_t trie_weight(const trie_t *tbl)
Return the number of keys in the trie.

trie_val_t *trie_get_try(trie_t *tbl, const char *key, uint32_t len)
Search the trie, returning NULL on failure.

trie_val_t *trie_get_first(trie_t *tbl, char **key, uint32_t *len)
Return pointer to the minimum. Optionally with key and its length.

trie_val_t *trie_get_ins(trie_t *tbl, const char *key, uint32_t len)
Search the trie, inserting NULL trie_val_t on failure.

int trie_get_leq(trie_t *tbl, const char *key, uint32_t len, trie_val_t **val)
Search for less-or-equal element.

Parameters
• tbl – Trie.

• key – Searched key.

• len – Key length.

• val – Must be valid; it will be set to NULL if not found or errored.

Returns
KNOT_EOK for exact match, 1 for previous, KNOT_ENOENT for not-found, or KNOT_E*.

int trie_apply(trie_t *tbl, int (*f)(trie_val_t*, void*), void *d)
Apply a function to every trie_val_t, in order.

Parameters
• d – Parameter passed as the second argument to f().

Returns
First nonzero from f() or zero (i.e. KNOT_EOK).

int trie_apply_with_key(trie_t *tbl, int (*f)(const char*, uint32_t, trie_val_t*, void*), void *d)
Apply a function to every trie_val_t, in order.

It’s like trie_apply() but additionally passes keys and their lengths.

Parameters
• d – Parameter passed as the second argument to f().

Returns
First nonzero from f() or zero (i.e. KNOT_EOK).

240 Chapter 19. Knot Resolver library

Knot Resolver, Release 6.0.0a1

int trie_del(trie_t *tbl, const char *key, uint32_t len, trie_val_t *val)
Remove an item, returning KNOT_EOK if succeeded or KNOT_ENOENT if not found.

If val!=NULL and deletion succeeded, the deleted value is set.

int trie_del_first(trie_t *tbl, char *key, uint32_t *len, trie_val_t *val)
Remove the first item, returning KNOT_EOK on success.

You may optionally get the key and/or value. The key is copied, so you need to pass sufficient len, otherwise
kr_error(ENOSPC) is returned.

trie_it_t *trie_it_begin(trie_t *tbl)
Create a new iterator pointing to the first element (if any).

void trie_it_next(trie_it_t *it)
Advance the iterator to the next element.

Iteration is in ascending lexicographical order. In particular, the empty string would be considered as the very
first.

Note: You may not use this function if the trie’s key-set has been modified during the lifetime of the iterator
(modifying values only is OK).

bool trie_it_finished(trie_it_t *it)
Test if the iterator has gone past the last element.

void trie_it_free(trie_it_t *it)
Free any resources of the iterator. It’s OK to call it on NULL.

const char *trie_it_key(trie_it_t *it, size_t *len)
Return pointer to the key of the current element.

Note: The optional len is uint32_t internally but size_t is better for our usage, as it is without an additional type
conversion.

trie_val_t *trie_it_val(trie_it_t *it)
Return pointer to the value of the current element (writable).

19.6. API reference 241

Knot Resolver, Release 6.0.0a1

242 Chapter 19. Knot Resolver library

CHAPTER

TWENTY

MODULES API REFERENCE

• Supported languages

• The anatomy of an extension

• Writing a module in Lua

• Writing a module in C

• Configuring modules

• Exposing C module properties

20.1 Supported languages

Currently modules written in C and Lua(JIT) are supported.

20.2 The anatomy of an extension

A module is a shared object or script defining specific functions/fields; here’s an overview.

C Lua Params Comment
X_api()1 API version
X_init() X.init() module Constructor
X_deinit() X.deinit() module Destructor
X_config() X.config() module, str Configuration
X_layer X.layer Module layer
X_props List of properties

The X corresponds to the module name; if the module name is hints, the prefix for constructor would be
hints_init(). More details are in docs for the kr_module and kr_layer_api structures.

Note: The modules get ordered – by default in the same as the order in which they were loaded. The loading command
can specify where in the order the module should be positioned.

1 Mandatory symbol; defined by using KR_MODULE_EXPORT().

243

Knot Resolver, Release 6.0.0a1

20.3 Writing a module in Lua

The probably most convenient way of writing modules is Lua since you can use already installed modules from system
and have first-class access to the scripting engine. You can also tap to all the events, that the C API has access to,
but keep in mind that transitioning from the C to Lua function is slower than the other way round, especially when
JIT-compilation is taken into account.

Note: The Lua functions retrieve an additional first parameter compared to the C counterparts - a “state”. Most useful
C functions and structures have lua FFI wrappers, sometimes with extra sugar.

The modules follow the Lua way, where the module interface is returned in a named table.

--- @module Count incoming queries
local counter = {}

function counter.init(module)
counter.total = 0
counter.last = 0
counter.failed = 0

end

function counter.deinit(module)
print('counted', counter.total, 'queries')

end

-- @function Run the q/s counter with given interval.
function counter.config(conf)

-- We can use the scripting facilities here
if counter.ev then event.cancel(counter.ev)
event.recurrent(conf.interval, function ()

print(counter.total - counter.last, 'q/s')
counter.last = counter.total

end)
end

return counter

The created module can be then loaded just like any other module, except it isn’t very useful since it doesn’t provide
any layer to capture events. The Lua module can however provide a processing layer, just like its C counterpart.

-- Notice it isn't a function, but a table of functions
counter.layer = {

begin = function (state, data)
counter.total = counter.total + 1
return state

end,
finish = function (state, req, answer)

if state == kres.FAIL then
counter.failed = counter.failed + 1

end
return state

end
(continues on next page)

244 Chapter 20. Modules API reference

http://lua-users.org/wiki/ModuleDefinition

Knot Resolver, Release 6.0.0a1

(continued from previous page)

}

There is currently an additional “feature” in comparison to C layer functions: some functions do not get called at all if
state == kres.FAIL; see docs for details: kr_layer_api.

Since the modules are like any other Lua modules, you can interact with them through the CLI and and any interface.

Tip: Module discovery: kres_modules. is prepended to the module name and lua search path is used on that.

20.4 Writing a module in C

As almost all the functions are optional, the minimal module looks like this:

#include "lib/module.h"
/* Convenience macro to declare module ABI. */
KR_MODULE_EXPORT(mymodule)

Let’s define an observer thread for the module as well. It’s going to be stub for the sake of brevity, but you can for
example create a condition, and notify the thread from query processing by declaring module layer (see the Writing
layers).

static void* observe(void *arg)
{

/* ... do some observing ... */
}

int mymodule_init(struct kr_module *module)
{

/* Create a thread and start it in the background. */
pthread_t thr_id;
int ret = pthread_create(&thr_id, NULL, &observe, NULL);
if (ret != 0) {

return kr_error(errno);
}

/* Keep it in the thread */
module->data = thr_id;
return kr_ok();

}

int mymodule_deinit(struct kr_module *module)
{

/* ... signalize cancellation ... */
void *res = NULL;
pthread_t thr_id = (pthread_t) module->data;
int ret = pthread_join(thr_id, res);
if (ret != 0) {

return kr_error(errno);
}

(continues on next page)

20.4. Writing a module in C 245

Knot Resolver, Release 6.0.0a1

(continued from previous page)

return kr_ok();
}

This example shows how a module can run in the background, this enables you to, for example, observe and publish
data about query resolution.

20.5 Configuring modules

There is a callback X_config() that you can implement, see hints module.

20.6 Exposing C module properties

A module can offer NULL-terminated list of properties, each property is essentially a callable with free-form JSON
input/output. JSON was chosen as an interchangeable format that doesn’t require any schema beforehand, so you can
do two things - query the module properties from external applications or between modules (e.g. statistics module can
query cache module for memory usage). JSON was chosen not because it’s the most efficient protocol, but because it’s
easy to read and write and interface to outside world.

Note: The void *env is a generic module interface. Since we’re implementing daemon modules, the pointer can be
cast to struct engine*. This is guaranteed by the implemented API version (see Writing a module in C).

Here’s an example how a module can expose its property:

char* get_size(void *env, struct kr_module *m,
const char *args)

{
/* Get cache from engine. */
struct engine *engine = env;
struct kr_cache *cache = &engine->resolver.cache;
/* Read item count */
int count = (cache->api)->count(cache->db);
char *result = NULL;
asprintf(&result, "{ \"result\": %d }", count);

return result;
}

struct kr_prop *cache_props(void)
{

static struct kr_prop prop_list[] = {
/* Callback, Name, Description */
{&get_size, "get_size", "Return number of records."},
{NULL, NULL, NULL}

};
return prop_list;

}

KR_MODULE_EXPORT(cache)

246 Chapter 20. Modules API reference

Knot Resolver, Release 6.0.0a1

Once you load the module, you can call the module property from the interactive console. Note: the JSON output will
be transparently converted to Lua tables.

$ kresd
...
[system] started in interactive mode, type 'help()'
> modules.load('cached')
> cached.get_size()
[size] => 53

20.6.1 Special properties

If the module declares properties get or set, they can be used in the Lua interpreter as regular tables.

20.6. Exposing C module properties 247

Knot Resolver, Release 6.0.0a1

248 Chapter 20. Modules API reference

CHAPTER

TWENTYONE

WORKER API REFERENCE

Functions

int worker_init(struct engine *engine, int worker_count)
Create and initialize the worker.

Returns
error code (ENOMEM)

void worker_deinit(void)
Destroy the worker (free memory).

int worker_submit(struct session *session, struct io_comm_data *comm, const uint8_t *eth_from, const uint8_t
*eth_to, knot_pkt_t *pkt)

Process an incoming packet (query from a client or answer from upstream).

Parameters
• session – session the packet came from, or NULL (not from network)

• comm – IO communication data (see struct io_comm_data docs)

• eth_* – MAC addresses or NULL (they’re useful for XDP)

• pkt – the packet, or NULL (an error from the transport layer)

Returns
0 or an error code

int worker_end_tcp(struct session *session)
End current DNS/TCP session, this disassociates pending tasks from this session which may be freely closed
afterwards.

knot_pkt_t *worker_resolve_mk_pkt_dname(knot_dname_t *qname, uint16_t qtype, uint16_t qclass, const struct
kr_qflags *options)

knot_pkt_t *worker_resolve_mk_pkt(const char *qname_str, uint16_t qtype, uint16_t qclass, const struct
kr_qflags *options)

Create a packet suitable for worker_resolve_start().

All in malloc() memory.

struct qr_task *worker_resolve_start(knot_pkt_t *query, struct kr_qflags options)
Start query resolution with given query.

Returns
task or NULL

249

Knot Resolver, Release 6.0.0a1

int worker_resolve_exec(struct qr_task *task, knot_pkt_t *query)

struct kr_request *worker_task_request(struct qr_task *task)

Returns
struct kr_request associated with opaque task

int worker_task_step(struct qr_task *task, const struct sockaddr *packet_source, knot_pkt_t *packet)

int worker_task_numrefs(const struct qr_task *task)

int worker_task_finalize(struct qr_task *task, int state)
Finalize given task.

void worker_task_complete(struct qr_task *task)

void worker_task_ref(struct qr_task *task)

void worker_task_unref(struct qr_task *task)

void worker_task_timeout_inc(struct qr_task *task)

int worker_add_tcp_connected(struct worker_ctx *worker, const struct sockaddr *addr, struct session *session)

int worker_del_tcp_connected(struct worker_ctx *worker, const struct sockaddr *addr)

int worker_del_tcp_waiting(struct worker_ctx *worker, const struct sockaddr *addr)

struct session *worker_find_tcp_waiting(struct worker_ctx *worker, const struct sockaddr *addr)

struct session *worker_find_tcp_connected(struct worker_ctx *worker, const struct sockaddr *addr)

knot_pkt_t *worker_task_get_pktbuf(const struct qr_task *task)

struct request_ctx *worker_task_get_request(struct qr_task *task)

struct session *worker_request_get_source_session(const struct kr_request *req)
Note: source session is NULL in case the request hasn’t come over network.

uint16_t worker_task_pkt_get_msgid(struct qr_task *task)

void worker_task_pkt_set_msgid(struct qr_task *task, uint16_t msgid)

uint64_t worker_task_creation_time(struct qr_task *task)

void worker_task_subreq_finalize(struct qr_task *task)

bool worker_task_finished(struct qr_task *task)

int qr_task_on_send(struct qr_task *task, const uv_handle_t *handle, int status)
To be called after sending a DNS message.

It mainly deals with cleanups.

250 Chapter 21. Worker API reference

Knot Resolver, Release 6.0.0a1

Variables

struct worker_ctx *the_worker
Pointer to the singleton worker.

NULL if not initialized.

struct worker_stats
#include <worker.h> Various worker statistics.

Sync with wrk_stats()

Public Members

size_t queries
Total number of requests (from clients and internal ones).

size_t concurrent
The number of requests currently in processing.

size_t rconcurrent

size_t dropped
The number of requests dropped due to being badly formed.

See #471.

size_t timeout
Number of outbound queries that timed out.

size_t udp
Number of outbound queries over UDP.

size_t tcp
Number of outbound queries over TCP (excluding TLS).

size_t tls
Number of outbound queries over TLS.

size_t ipv4
Number of outbound queries over IPv4.

size_t ipv6
Number of outbound queries over IPv6.

size_t err_udp
Total number of write errors for UDP transport.

251

Knot Resolver, Release 6.0.0a1

size_t err_tcp
Total number of write errors for TCP transport.

size_t err_tls
Total number of write errors for TLS transport.

size_t err_http
Total number of write errors for HTTP(S) transport.

252 Chapter 21. Worker API reference

CHAPTER

TWENTYTWO

CUSTOM HTTP SERVICES

This chapter describes how to create custom HTTP services inside Knot Resolver. Please read HTTP module basics in
chapter Other HTTP services before continuing.

Each network address+protocol+port combination configured using net.listen() is associated with kind of end-
point, e.g. doh_legacy or webmgmt.

Each of these kind names is associated with table of HTTP endpoints, and the default table can be replaced using
http.config() configuration call which allows your to provide your own HTTP endpoints.

Items in the table of HTTP endpoints are small tables describing a triplet - {mime, on_serve, on_websocket}.
In order to register a new service in webmgmt kind of HTTP endpoint add the new endpoint description to respective
table:

-- custom function to handle HTTP /health requests
local on_health = {'application/json',
function (h, stream)

-- API call, return a JSON table
return {state = 'up', uptime = 0}

end,
function (h, ws)

-- Stream current status every second
local ok = true
while ok do

local push = tojson('up')
ok = ws:send(tojson({'up'}))
require('cqueues').sleep(1)

end
-- Finalize the WebSocket
ws:close()

end}

modules.load('http')
-- copy all existing webmgmt endpoints
my_mgmt_endpoints = http.configs._builtin.webmgmt.endpoints
-- add custom endpoint to the copy
my_mgmt_endpoints['/health'] = on_health
-- use custom HTTP configuration for webmgmt
http.config({

endpoints = my_mgmt_endpoints
}, 'webmgmt')

Then you can query the API endpoint, or tail the WebSocket using curl.

253

Knot Resolver, Release 6.0.0a1

$ curl -k https://localhost:8453/health
{"state":"up","uptime":0}
$ curl -k -i -N -H "Connection: Upgrade" -H "Upgrade: websocket" -H "Host:␣
→˓localhost:8453/health" -H "Sec-Websocket-Key: nope" -H "Sec-Websocket-Version: 13"␣
→˓https://localhost:8453/health
HTTP/1.1 101 Switching Protocols
upgrade: websocket
sec-websocket-accept: eg18mwU7CDRGUF1Q+EJwPM335eM=
connection: upgrade

?["up"]?["up"]?["up"]

Since the stream handlers are effectively coroutines, you are free to keep state and yield using cqueues library.

This is especially useful for WebSockets, as you can stream content in a simple loop instead of chains of callbacks.

Last thing you can publish from modules are “snippets”. Snippets are plain pieces of HTML code that are rendered
at the end of the built-in webpage. The snippets can be extended with JS code to talk to already exported restful APIs
and subscribe to WebSockets.

http.snippets['/health'] = {'Health service', '<p>UP!</p>'}

22.1 Custom RESTful services

A RESTful service is likely to respond differently to different type of methods and requests, there are three things that
you can do in a service handler to send back results. First is to just send whatever you want to send back, it has to
respect MIME type that the service declared in the endpoint definition. The response code would then be 200 OK,
any non-string responses will be packed to JSON. Alternatively, you can respond with a number corresponding to the
HTTP response code or send headers and body yourself.

-- Our upvalue
local value = 42

-- Expose the service
local service = {'application/json',
function (h, stream)

-- Get request method and deal with it properly
local m = h:get(':method')
local path = h:get(':path')
log('method %s path %s', m, path)
-- Return table, response code will be '200 OK'
if m == 'GET' then

return {key = path, value = value}
-- Save body, perform check and either respond with 505 or 200 OK
elseif m == 'POST' then

local data = stream:get_body_as_string()
if not tonumber(data) then

return 500, 'Not a good request'
end
value = tonumber(data)

-- Unsupported method, return 405 Method not allowed
else

(continues on next page)

254 Chapter 22. Custom HTTP services

http://www.25thandclement.com/~william/projects/cqueues.html

Knot Resolver, Release 6.0.0a1

(continued from previous page)

return 405, 'Cannot do that'
end

end}
modules.load('http')
http.config({

endpoints = { ['/service'] = service }
}, 'myservice')
-- do not forget to create socket of new kind using
-- net.listen(..., { kind = 'myservice' })
-- or configure systemd socket kresd-myservice.socket

In some cases you might need to send back your own headers instead of default provided by HTTP handler, you can do
this, but then you have to return false to notify handler that it shouldn’t try to generate a response.

local headers = require('http.headers')
function (h, stream)

-- Send back headers
local hsend = headers.new()
hsend:append(':status', '200')
hsend:append('content-type', 'binary/octet-stream')
assert(stream:write_headers(hsend, false))
-- Send back data
local data = 'binary-data'
assert(stream:write_chunk(data, true))
-- Disable default handler action
return false

end

22.1. Custom RESTful services 255

Knot Resolver, Release 6.0.0a1

256 Chapter 22. Custom HTTP services

CHAPTER

TWENTYTHREE

INDICES AND TABLES

• genindex

• modindex

• search

257

Knot Resolver, Release 6.0.0a1

258 Chapter 23. Indices and tables

PYTHON MODULE INDEX

p
policy, 44

259

Knot Resolver, Release 6.0.0a1

260 Python Module Index

INDEX

Symbols
--help

kresctl command line option, 113
--json

kresctl command line option, 113, 114
--live

kresctl command line option, 114
--path

kresctl command line option, 113, 114
--socket

kresctl command line option, 113
--yaml

kresctl command line option, 113, 114
-h

kresctl command line option, 113
-l

kresctl command line option, 114
-p

kresctl command line option, 113, 114
-s

kresctl command line option, 113
<file>

kresctl command line option, 114
<input_file>

kresctl command line option, 115
<output_file>

kresctl command line option, 115
[anonymous] (C enum), 200
[anonymous].AR_ANSWER (C enumerator), 201
[anonymous].AR_CPE (C enumerator), 201
[anonymous].AR_NSEC (C enumerator), 201
[anonymous].AR_SOA (C enumerator), 201
[anonymous].AR_WILD (C enumerator), 201
[anonymous].ENTRY_APEX_NSECS_CNT (C enumera-

tor), 200

A
add() (in module policy), 56
addr_info_f (C type), 179
address_state (C struct), 212
address_state.broken (C var), 213
address_state.choice_array_index (C var), 213

address_state.error_count (C var), 213
address_state.errors (C var), 213
address_state.generation (C var), 213
address_state.ns_name (C var), 213
address_state.rtt_state (C var), 213
address_state.tls_capable (C var), 213
all() (in module policy), 44
alloc_wire_f (C type), 179
answer (C struct), 207
ANSWER() (in module policy), 47
answer.answer_rrset (C struct), 207
answer.answer_rrset.set (C var), 207
answer.answer_rrset.sig_rds (C var), 207
answer.mm (C var), 207
answer.nsec_p (C var), 207
answer.rcode (C var), 207
answer.rrsets (C var), 207
answer_from_pkt (C function), 202
array_clear (C macro), 231
array_clear_mm (C macro), 231
array_del (C macro), 232
array_init (C macro), 231
array_next_count (C function), 232
array_pop (C macro), 232
array_push (C macro), 232
array_push_mm (C macro), 232
array_reserve (C macro), 231
array_reserve_mm (C macro), 231
array_std_free (C function), 232
array_std_reserve (C function), 232
array_t (C macro), 231
array_tail (C macro), 232
async_resolution_f (C type), 179

B
built-in function

cache.backends(), 33
cache.clear(), 36
cache.close(), 34
cache.count(), 34
cache.fssize(), 34
cache.get(), 36

261

Knot Resolver, Release 6.0.0a1

cache.max_ttl(), 35
cache.min_ttl(), 35
cache.ns_tout(), 35
cache.open(), 33
cache.stats(), 34
event.after(), 94
event.cancel(), 95
event.recurrent(), 94
event.reschedule(), 94
event.socket(), 95
fromjson(), 91
hints.add_hosts(), 59
hints.config(), 59
hints.del(), 59
hints.get(), 59
hints.root(), 60
hints.root_file(), 60
hints.set(), 59
hints.ttl(), 60
hints.use_nodata(), 60
hostname(), 91
log_groups(), 66
log_level(), 66
log_target(), 66
map(), 88
mode(), 87
modules.list(), 19
modules.load(), 19
modules.unload(), 19
net.bufsize(), 30
net.close(), 22
net.doh_headers(), 26
net.interfaces(), 23
net.list(), 22
net.listen(), 20
net.outgoing_v4(), 29
net.outgoing_v6(), 29
net.proxy_allowed(), 21
net.tcp_pipeline(), 23
net.tls(), 25
net.tls_padding(), 26
net.tls_sticket_secret(), 25
net.tls_sticket_secret_file(), 26
package_version(), 91
predict.config(), 40
reorder_RR(), 62
resolve(), 91
stats.clear_frequent(), 70
stats.frequent(), 70
stats.get(), 70
stats.list(), 70
stats.set(), 70
stats.upstreams(), 70
tojson(), 92

trust_anchors.add(), 87
trust_anchors.add_file(), 85
trust_anchors.remove(), 86
trust_anchors.set_insecure(), 86
trust_anchors.summary(), 87
user(), 108
verbose(), 66
worker.coroutine(), 95
worker.sleep(), 96
worker.stats(), 72

bytes_to_ip (C function), 210

C
cache.backends()

built-in function, 33
cache.clear()

built-in function, 36
cache.close()

built-in function, 34
cache.count()

built-in function, 34
cache.fssize()

built-in function, 34
cache.get()

built-in function, 36
cache.max_ttl()

built-in function, 35
cache.min_ttl()

built-in function, 35
cache.ns_tout()

built-in function, 35
cache.open()

built-in function, 33
cache.size, 107
cache.stats()

built-in function, 34
cache_op (C macro), 200
cache_peek (C function), 195
cache_stash (C function), 195
choice (C struct), 213
choice.address (C var), 213
choice.address_len (C var), 213
choice.address_state (C var), 213
choice.port (C var), 213
config

kresctl command line option, 113
convert

kresctl command line option, 115
custom_action() (in module policy), 50
custom_filter() (in module policy), 45

D
DEBUG_ALWAYS (in module policy), 48
DEBUG_CACHE_MISS (in module policy), 48

262 Index

Knot Resolver, Release 6.0.0a1

DEBUG_IF() (in module policy), 48
del() (in module policy), 56
delete

kresctl command line option, 114
DENY (in module policy), 46
DENY_MSG() (in module policy), 46
domains() (in module policy), 45
DROP (in module policy), 46

E
EL (C enum), 200
EL.EL_CNAME (C enumerator), 200
EL.EL_DNAME (C enumerator), 200
EL.EL_LENGTH (C enumerator), 200
EL.EL_NS (C enumerator), 200
EL2RRTYPE (C function), 201
entry2answer (C function), 203
entry_apex (C struct), 206
entry_apex.data (C var), 207
entry_apex.has_cname (C var), 206
entry_apex.has_dname (C var), 206
entry_apex.has_ns (C var), 206
entry_apex.nsecs (C var), 207
entry_apex.pad_ (C var), 206
entry_apex_consistent (C function), 201
entry_h (C struct), 205
entry_h._pad (C var), 205
entry_h.data (C var), 205
entry_h.has_optout (C var), 205
entry_h.is_packet (C var), 205
entry_h.rank (C var), 205
entry_h.time (C var), 205
entry_h.ttl (C var), 205
entry_h_consistent (C function), 201
entry_h_consistent_E (C function), 201
entry_h_consistent_NSEC (C function), 201
entry_h_seek (C function), 201
entry_h_splice (C function), 202
entry_list_memcpy (C function), 202
entry_list_parse (C function), 202
entry_list_serial_size (C function), 202
entry_list_t (C type), 200
environment variable

cache.current_size, 33
cache.current_storage, 33
cache.size, 33, 107
cache.storage, 33
debugging.assertion_abort = false|true,

76
debugging.assertion_fork = milliseconds,

76
env (table), 91
net.ipv4 = true|false, 29
net.ipv6 = true|false, 29

trust_anchors.hold_down_time = 30 * day,
86

trust_anchors.keep_removed = 0, 86
trust_anchors.refresh_time = nil, 86
worker.id, 72, 121
worker.pid, 72

error (C function), 210
event.after()

built-in function, 94
event.cancel()

built-in function, 95
event.recurrent()

built-in function, 94
event.reschedule()

built-in function, 94
event.socket()

built-in function, 95

F
FLAGS() (in module policy), 48
FORWARD() (in module policy), 50
fromjson()

built-in function, 91

G
get

kresctl command line option, 113
get_new_ttl (C function), 203
get_rtt_state (C function), 210
get_uint16 (C function), 204
get_workdir (C function), 223

H
hints.add_hosts()

built-in function, 59
hints.config()

built-in function, 59
hints.del()

built-in function, 59
hints.get()

built-in function, 59
hints.root()

built-in function, 60
hints.root_file()

built-in function, 60
hints.set()

built-in function, 59
hints.ttl()

built-in function, 60
hints.use_nodata()

built-in function, 60
hostname()

built-in function, 91

Index 263

Knot Resolver, Release 6.0.0a1

I
ip_to_bytes (C function), 210
IPTRACE (in module policy), 49
is_expiring (C function), 203

K
key (C struct), 206
key.buf (C var), 206
key.type (C var), 206
key.zlf_len (C var), 206
key.zname (C var), 206
key_exact_type (C function), 201
key_exact_type_maypkt (C function), 201
key_NSEC1 (C function), 204
key_NSEC3 (C function), 204
key_nsec3_hash_off (C function), 201
key_nwz_off (C function), 201
knot_db_val_bound (C function), 204
knot_dname_lf2wire (C function), 227
kr_absolutize_path (C function), 223
kr_assert (C macro), 222
kr_assert_func (C function), 223
kr_bitcmp (C function), 226
kr_bitmask (C function), 226
kr_cache (C struct), 198
kr_cache.api (C var), 198
kr_cache.checkpoint_monotime (C var), 199
kr_cache.checkpoint_walltime (C var), 199
kr_cache.db (C var), 198
kr_cache.health_timer (C var), 199
kr_cache.stats (C var), 198
kr_cache.ttl_max (C var), 199
kr_cache.ttl_min (C var), 198
kr_cache_check_health (C function), 198
kr_cache_clear (C function), 196
kr_cache_close (C function), 195
kr_cache_closest_apex (C function), 197
kr_cache_commit (C function), 196
kr_cache_emergency_file_to_remove (C var), 198
kr_cache_insert_rr (C function), 196
kr_cache_is_open (C function), 196
KR_CACHE_KEY_MAXLEN (C macro), 200
kr_cache_make_checkpoint (C function), 196
kr_cache_match (C function), 197
kr_cache_materialize (C function), 196
kr_cache_open (C function), 195
kr_cache_p (C struct), 199
kr_cache_p.rank (C var), 199
kr_cache_p.raw_bound (C var), 199
kr_cache_p.raw_data (C var), 199
kr_cache_p.time (C var), 199
kr_cache_p.ttl (C var), 199
kr_cache_p.[anonymous] (C var), 199

kr_cache_peek_exact (C function), 196
kr_cache_remove (C function), 196
kr_cache_remove_subtree (C function), 197
KR_CACHE_RR_COUNT_SIZE (C macro), 200
kr_cache_ttl (C function), 196
KR_COLD (C macro), 230
KR_CONST (C macro), 230
kr_context (C struct), 183
kr_context.cache (C var), 184
kr_context.cache_cookie (C var), 184
kr_context.cache_rtt_tout_retry_interval (C

var), 184
kr_context.cookie_ctx (C var), 184
kr_context.downstream_opt_rr (C var), 184
kr_context.modules (C var), 184
kr_context.negative_anchors (C var), 184
kr_context.options (C var), 184
kr_context.pool (C var), 184
kr_context.root_hints (C var), 184
kr_context.tls_padding (C var), 184
kr_context.trust_anchors (C var), 184
kr_context.upstream_opt_rr (C var), 184
kr_dbg_assertion_abort (C var), 228
kr_dbg_assertion_fork (C var), 228
kr_dirent_name (C function), 228
KR_DNAME_GET_STR (C macro), 222
kr_dname_lf (C function), 227
kr_dname_text (C function), 226
KR_DUMP_STYLE_DEFAULT (C var), 228
kr_error (C function), 230
KR_EXPORT (C macro), 230
kr_extended_error (C struct), 185
kr_extended_error.extra_text (C var), 185
kr_extended_error.info_code (C var), 185
kr_fail (C function), 223
kr_fails_assert (C macro), 222
kr_family_len (C function), 225
kr_file_mtime (C function), 228
kr_forward_add_target (C function), 209
kr_fssize (C function), 228
kr_http_header_array_entry (C struct), 229
kr_http_header_array_entry.name (C var), 229
kr_http_header_array_entry.value (C var), 229
kr_http_header_array_entry_t (C type), 223
kr_http_header_array_t (C type), 223
kr_in_addr (C union), 229
kr_in_addr.ip4 (C var), 229
kr_in_addr.ip6 (C var), 229
kr_inaddr (C function), 224
kr_inaddr_family (C function), 224
kr_inaddr_len (C function), 224
kr_inaddr_port (C function), 225
kr_inaddr_set_port (C function), 225
kr_inaddr_str (C function), 225

264 Index

Knot Resolver, Release 6.0.0a1

kr_layer (C struct), 220
kr_layer.api (C var), 220
kr_layer.dst (C var), 221
kr_layer.is_stream (C var), 221
kr_layer.pkt (C var), 221
kr_layer.req (C var), 220
kr_layer.state (C var), 220
kr_layer_api (C struct), 221
kr_layer_api.answer_finalize (C var), 221
kr_layer_api.begin (C var), 221
kr_layer_api.cb_slots (C var), 222
kr_layer_api.checkout (C var), 221
kr_layer_api.consume (C var), 221
kr_layer_api.data (C var), 221
kr_layer_api.finish (C var), 221
kr_layer_api.produce (C var), 221
kr_layer_api.reset (C var), 221
kr_layer_api_t (C type), 219
kr_layer_pickle (C struct), 222
kr_layer_pickle.api (C var), 222
kr_layer_pickle.next (C var), 222
kr_layer_pickle.pkt (C var), 222
kr_layer_pickle.state (C var), 222
kr_layer_state (C enum), 220
kr_layer_state.KR_STATE_CONSUME (C enumerator),

220
kr_layer_state.KR_STATE_DONE (C enumerator), 220
kr_layer_state.KR_STATE_FAIL (C enumerator), 220
kr_layer_state.KR_STATE_PRODUCE (C enumerator),

220
kr_layer_state.KR_STATE_YIELD (C enumerator),

220
kr_layer_t (C type), 219
kr_log (C macro), 80
kr_log_crit (C macro), 80
kr_log_debug (C macro), 80
kr_log_deprecate (C macro), 80
kr_log_error (C macro), 80
kr_log_fmt (C function), 84
kr_log_group (C enum), 82
kr_log_group.LOG_GRP_CACHE (C enumerator), 82
kr_log_group.LOG_GRP_CONTROL (C enumerator), 83
kr_log_group.LOG_GRP_COOKIES (C enumerator), 82
kr_log_group.LOG_GRP_DAF (C enumerator), 83
kr_log_group.LOG_GRP_DETECTTIMEJUMP (C enu-

merator), 83
kr_log_group.LOG_GRP_DETECTTIMESKEW (C enu-

merator), 83
kr_log_group.LOG_GRP_DEVEL (C enumerator), 84
kr_log_group.LOG_GRP_DNSSEC (C enumerator), 82
kr_log_group.LOG_GRP_DNSTAP (C enumerator), 83
kr_log_group.LOG_GRP_DOH (C enumerator), 82
kr_log_group.LOG_GRP_DOTAUTH (C enumerator), 83
kr_log_group.LOG_GRP_EDE (C enumerator), 84

kr_log_group.LOG_GRP_GNUTLS (C enumerator), 82
kr_log_group.LOG_GRP_GRAPHITE (C enumerator),

83
kr_log_group.LOG_GRP_HINT (C enumerator), 82
kr_log_group.LOG_GRP_HTTP (C enumerator), 83
kr_log_group.LOG_GRP_IO (C enumerator), 82
kr_log_group.LOG_GRP_ITERATOR (C enumerator),

82
kr_log_group.LOG_GRP_MODULE (C enumerator), 84
kr_log_group.LOG_GRP_NETWORK (C enumerator), 82
kr_log_group.LOG_GRP_NSID (C enumerator), 83
kr_log_group.LOG_GRP_PLAN (C enumerator), 82
kr_log_group.LOG_GRP_POLICY (C enumerator), 83
kr_log_group.LOG_GRP_PREFILL (C enumerator), 83
kr_log_group.LOG_GRP_PRIMING (C enumerator), 83
kr_log_group.LOG_GRP_REBIND (C enumerator), 83
kr_log_group.LOG_GRP_RENUMBER (C enumerator),

84
kr_log_group.LOG_GRP_REQDBG (C enumerator), 84
kr_log_group.LOG_GRP_RESOLVER (C enumerator),

82
kr_log_group.LOG_GRP_SELECTION (C enumerator),

82
kr_log_group.LOG_GRP_SRVSTALE (C enumerator),

83
kr_log_group.LOG_GRP_STATISTICS (C enumerator),

83
kr_log_group.LOG_GRP_SYSTEM (C enumerator), 82
kr_log_group.LOG_GRP_TA (C enumerator), 82
kr_log_group.LOG_GRP_TASENTINEL (C enumerator),

83
kr_log_group.LOG_GRP_TASIGNALING (C enumera-

tor), 83
kr_log_group.LOG_GRP_TAUPDATE (C enumerator),

83
kr_log_group.LOG_GRP_TESTS (C enumerator), 83
kr_log_group.LOG_GRP_TLS (C enumerator), 82
kr_log_group.LOG_GRP_TLSCLIENT (C enumerator),

82
kr_log_group.LOG_GRP_UNKNOWN (C enumerator), 82
kr_log_group.LOG_GRP_VALIDATOR (C enumerator),

82
kr_log_group.LOG_GRP_WATCHDOG (C enumerator),

83
kr_log_group.LOG_GRP_WORKER (C enumerator), 83
kr_log_group.LOG_GRP_XDP (C enumerator), 82
kr_log_group.LOG_GRP_ZCUT (C enumerator), 82
kr_log_group_add (C function), 84
kr_log_group_is_set (C function), 84
kr_log_group_reset (C function), 84
kr_log_grp2name (C function), 84
kr_log_info (C macro), 80
kr_log_is_debug (C macro), 81
kr_log_is_debug_fun (C function), 84

Index 265

Knot Resolver, Release 6.0.0a1

kr_log_is_debug_qry (C macro), 81
kr_log_level (C var), 85
kr_log_level2name (C function), 84
KR_LOG_LEVEL_IS (C macro), 80
kr_log_level_set (C function), 84
kr_log_level_t (C type), 81
kr_log_name2grp (C function), 84
kr_log_name2level (C function), 84
kr_log_notice (C macro), 80
kr_log_q (C macro), 81
kr_log_q1 (C function), 84
kr_log_req (C macro), 80
kr_log_req1 (C function), 84
KR_LOG_SJM_STR (C macro), 81
kr_log_target (C var), 85
kr_log_target_set (C function), 84
kr_log_target_t (C enum), 81
kr_log_target_t.LOG_TARGET_DEFAULT (C enumer-

ator), 81
kr_log_target_t.LOG_TARGET_STDERR (C enumera-

tor), 81
kr_log_target_t.LOG_TARGET_STDOUT (C enumera-

tor), 81
kr_log_target_t.LOG_TARGET_SYSLOG (C enumera-

tor), 81
kr_log_warning (C macro), 80
kr_memreserve (C function), 224
kr_module (C struct), 218
kr_module.config (C var), 218
kr_module.data (C var), 219
kr_module.deinit (C var), 218
kr_module.init (C var), 218
kr_module.layer (C var), 219
kr_module.lib (C var), 219
kr_module.name (C var), 218
kr_module.props (C var), 219
KR_MODULE_API (C macro), 217
kr_module_call (C function), 227
KR_MODULE_EXPORT (C macro), 217
kr_module_get_embedded (C function), 218
kr_module_init_cb (C type), 217
kr_module_load (C function), 218
kr_module_unload (C function), 218
KR_NORETURN (C macro), 230
kr_now (C function), 227
KR_NS_TIMEOUT_MIN_DEAD_TIMEOUT (C macro), 208
KR_NS_TIMEOUT_RETRY_INTERVAL (C macro), 208
KR_NS_TIMEOUT_ROW_DEAD (C macro), 208
kr_ntop_str (C function), 225
kr_ok (C macro), 230
kr_pkt_clear_payload (C function), 224
kr_pkt_has_dnssec (C function), 228
kr_pkt_has_wire (C function), 228
kr_pkt_make_auth_header (C function), 224

kr_pkt_put (C function), 224
kr_pkt_qclass (C function), 228
kr_pkt_qname_raw (C function), 224
kr_pkt_qtype (C function), 228
kr_pkt_recycle (C function), 224
KR_PKT_SIZE_NOWIRE (C var), 228
kr_pkt_text (C function), 226
KR_PRINTF (C macro), 230
kr_prop (C struct), 219
kr_prop.cb (C var), 219
kr_prop.info (C var), 219
kr_prop.name (C var), 219
KR_PURE (C macro), 230
kr_qflags (C struct), 190
kr_qflags.ALLOW_LOCAL (C var), 191
kr_qflags.ALWAYS_CUT (C var), 192
kr_qflags.AWAIT_CUT (C var), 191
kr_qflags.AWAIT_IPV4 (C var), 191
kr_qflags.AWAIT_IPV6 (C var), 191
kr_qflags.BADCOOKIE_AGAIN (C var), 192
kr_qflags.CACHE_TRIED (C var), 193
kr_qflags.CACHED (C var), 191
kr_qflags.CNAME (C var), 192
kr_qflags.DNS64_DISABLE (C var), 193
kr_qflags.DNS64_MARK (C var), 193
kr_qflags.DNSSEC_BOGUS (C var), 191
kr_qflags.DNSSEC_CD (C var), 192
kr_qflags.DNSSEC_INSECURE (C var), 192
kr_qflags.DNSSEC_NODS (C var), 192
kr_qflags.DNSSEC_OPTOUT (C var), 192
kr_qflags.DNSSEC_WANT (C var), 191
kr_qflags.DNSSEC_WEXPAND (C var), 192
kr_qflags.EXPIRING (C var), 191
kr_qflags.FORWARD (C var), 193
kr_qflags.NO_0X20 (C var), 192
kr_qflags.NO_ANSWER (C var), 191
kr_qflags.NO_CACHE (C var), 191
kr_qflags.NO_EDNS (C var), 191
kr_qflags.NO_IPV4 (C var), 190
kr_qflags.NO_IPV6 (C var), 190
kr_qflags.NO_MINIMIZE (C var), 190
kr_qflags.NO_NS_FOUND (C var), 193
kr_qflags.NONAUTH (C var), 192
kr_qflags.PERMISSIVE (C var), 192
kr_qflags.PKT_IS_SANE (C var), 193
kr_qflags.REORDER_RR (C var), 192
kr_qflags.RESOLVED (C var), 191
kr_qflags.STRICT (C var), 192
kr_qflags.STUB (C var), 192
kr_qflags.TCP (C var), 191
kr_qflags.TRACE (C var), 192
kr_qflags_clear (C function), 188
kr_qflags_set (C function), 188
kr_query (C struct), 193

266 Index

Knot Resolver, Release 6.0.0a1

kr_query.cname_depth (C var), 194
kr_query.cname_parent (C var), 194
kr_query.creation_time_mono (C var), 194
kr_query.deferred (C var), 194
kr_query.flags (C var), 193
kr_query.forward_flags (C var), 193
kr_query.id (C var), 193
kr_query.parent (C var), 193
kr_query.reorder (C var), 193
kr_query.request (C var), 194
kr_query.sclass (C var), 193
kr_query.secret (C var), 194
kr_query.server_selection (C var), 194
kr_query.sname (C var), 193
kr_query.stale_cb (C var), 194
kr_query.stype (C var), 193
kr_query.timestamp (C var), 194
kr_query.timestamp_mono (C var), 194
kr_query.uid (C var), 194
kr_query.zone_cut (C var), 194
kr_query_inform_timeout (C function), 183
kr_rand_bytes (C function), 224
kr_rand_coin (C function), 224
kr_rank (C enum), 179
kr_rank.KR_RANK_AUTH (C enumerator), 180
kr_rank.KR_RANK_BOGUS (C enumerator), 180
kr_rank.KR_RANK_INDET (C enumerator), 180
kr_rank.KR_RANK_INITIAL (C enumerator), 180
kr_rank.KR_RANK_INSECURE (C enumerator), 180
kr_rank.KR_RANK_MISMATCH (C enumerator), 180
kr_rank.KR_RANK_MISSING (C enumerator), 180
kr_rank.KR_RANK_OMIT (C enumerator), 180
kr_rank.KR_RANK_SECURE (C enumerator), 180
kr_rank.KR_RANK_TRY (C enumerator), 180
kr_rank_check (C function), 181
kr_rank_set (C function), 181
kr_rank_test (C function), 181
kr_ranked_rrarray_add (C function), 226
kr_ranked_rrarray_finalize (C function), 226
kr_ranked_rrarray_set_wire (C function), 226
kr_request (C struct), 185
kr_request.add_selected (C var), 187
kr_request.addr (C var), 185
kr_request.alloc_wire_cb (C var), 188
kr_request.answ_selected (C var), 187
kr_request.answ_validated (C var), 187
kr_request.answer (C var), 185
kr_request.auth_selected (C var), 187
kr_request.auth_validated (C var), 187
kr_request.comm_addr (C var), 186
kr_request.comm_flags (C var), 186
kr_request.count_fail_row (C var), 188
kr_request.count_no_nsaddr (C var), 188
kr_request.ctx (C var), 185

kr_request.current_query (C var), 185
kr_request.dst_addr (C var), 186
kr_request.extended_error (C var), 188
kr_request.flags (C var), 186
kr_request.forwarding_targets (C var), 188
kr_request.headers (C var), 186
kr_request.is_tcp_connected (C var), 187
kr_request.is_tcp_waiting (C var), 187
kr_request.is_tls_capable (C var), 187
kr_request.options (C var), 186
kr_request.packet (C var), 186
kr_request.pool (C var), 187
kr_request.qsource (C var), 186
kr_request.rank (C var), 187
kr_request.rplan (C var), 187
kr_request.rtt (C var), 186
kr_request.selection_context (C var), 188
kr_request.size (C var), 186
kr_request.state (C var), 187
kr_request.stream_id (C var), 186
kr_request.trace_finish (C var), 187
kr_request.trace_log (C var), 187
kr_request.transport (C var), 186
kr_request.uid (C var), 187
kr_request.upstream (C var), 186
kr_request.vars_ref (C var), 187
kr_request_ensure_answer (C function), 181
kr_request_ensure_edns (C function), 181
kr_request_qsource_flags (C struct), 184
kr_request_qsource_flags.http (C var), 185
kr_request_qsource_flags.tcp (C var), 185
kr_request_qsource_flags.tls (C var), 185
kr_request_qsource_flags.xdp (C var), 185
kr_request_selected (C macro), 179
kr_request_set_extended_error (C function), 183
kr_require (C macro), 222
kr_resolve_begin (C function), 181
kr_resolve_checkout (C function), 182
kr_resolve_consume (C function), 181
kr_resolve_finish (C function), 182
kr_resolve_plan (C function), 182
kr_resolve_pool (C function), 183
kr_resolve_produce (C function), 182
kr_rnd_buffered (C function), 223
kr_rplan (C struct), 194
kr_rplan.initial (C var), 195
kr_rplan.next_uid (C var), 195
kr_rplan.pending (C var), 195
kr_rplan.pool (C var), 195
kr_rplan.request (C var), 195
kr_rplan.resolved (C var), 195
kr_rplan_deinit (C function), 188
kr_rplan_empty (C function), 189
kr_rplan_find_resolved (C function), 190

Index 267

Knot Resolver, Release 6.0.0a1

kr_rplan_init (C function), 188
kr_rplan_last (C function), 190
kr_rplan_pop (C function), 189
kr_rplan_push (C function), 189
kr_rplan_push_empty (C function), 189
kr_rplan_resolved (C function), 190
kr_rplan_satisfies (C function), 190
kr_rrkey (C function), 226
KR_RRKEY_LEN (C macro), 223
kr_rrset_init (C function), 228
kr_rrset_text (C function), 226
kr_rrset_type_maysig (C function), 227
kr_rrsig_sig_expiration (C function), 228
kr_rrsig_sig_inception (C function), 228
kr_rrsig_type_covered (C function), 228
KR_RRTYPE_GET_STR (C macro), 222
kr_rrtype_text (C function), 227
kr_selection_error (C enum), 208
kr_selection_error.KR_SELECTION_BAD_CNAME (C

enumerator), 209
kr_selection_error.KR_SELECTION_DNSSEC_ERROR

(C enumerator), 209
kr_selection_error.KR_SELECTION_FORMERR (C

enumerator), 208
kr_selection_error.KR_SELECTION_FORMERR_EDNS

(C enumerator), 208
kr_selection_error.KR_SELECTION_LAME_DELEGATION

(C enumerator), 209
kr_selection_error.KR_SELECTION_MALFORMED (C

enumerator), 208
kr_selection_error.KR_SELECTION_MISMATCHED

(C enumerator), 209
kr_selection_error.KR_SELECTION_NOTIMPL (C

enumerator), 208
kr_selection_error.KR_SELECTION_NUMBER_OF_ERRORS

(C enumerator), 209
kr_selection_error.KR_SELECTION_OK (C enumer-

ator), 208
kr_selection_error.KR_SELECTION_OTHER_RCODE

(C enumerator), 208
kr_selection_error.KR_SELECTION_QUERY_TIMEOUT

(C enumerator), 208
kr_selection_error.KR_SELECTION_REFUSED (C

enumerator), 208
kr_selection_error.KR_SELECTION_SERVFAIL (C

enumerator), 208
kr_selection_error.KR_SELECTION_TCP_CONNECT_FAILED

(C enumerator), 208
kr_selection_error.KR_SELECTION_TCP_CONNECT_TIMEOUT

(C enumerator), 208
kr_selection_error.KR_SELECTION_TLS_HANDSHAKE_FAILED

(C enumerator), 208
kr_selection_error.KR_SELECTION_TRUNCATED (C

enumerator), 209

kr_server_selection (C struct), 211
kr_server_selection.choose_transport (C var),

212
kr_server_selection.error (C var), 212
kr_server_selection.initialized (C var), 212
kr_server_selection.local_state (C var), 212
kr_server_selection.update_rtt (C var), 212
kr_server_selection_init (C function), 209
kr_sockaddr (C union), 229
kr_sockaddr.ip (C var), 229
kr_sockaddr.ip4 (C var), 229
kr_sockaddr.ip6 (C var), 229
kr_sockaddr_array_t (C type), 179
kr_sockaddr_cmp (C function), 225
kr_sockaddr_from_key (C function), 224
kr_sockaddr_key (C function), 224
kr_sockaddr_key_same_addr (C function), 225
kr_sockaddr_key_storage (C struct), 229
kr_sockaddr_key_storage.bytes (C var), 229
kr_sockaddr_len (C function), 224
kr_sockaddr_link_local (C function), 226
kr_stale_cb (C type), 188
kr_state_consistent (C function), 220
kr_straddr (C function), 225
kr_straddr_family (C function), 225
kr_straddr_join (C function), 225
KR_STRADDR_MAXLEN (C macro), 222
kr_straddr_socket (C function), 225
kr_straddr_subnet (C function), 225
kr_strcatdup (C function), 223
kr_strerror (C macro), 230
kr_strptime_diff (C function), 227
kr_timer_elapsed (C function), 227
kr_timer_elapsed_us (C function), 227
kr_timer_start (C function), 227
kr_timer_t (C type), 223
kr_transport (C struct), 210
kr_transport.address (C var), 211
kr_transport.address_len (C var), 211
kr_transport.deduplicated (C var), 211
kr_transport.ns_name (C var), 211
kr_transport.protocol (C var), 211
kr_transport.timeout (C var), 211
kr_transport.timeout_capped (C var), 211
kr_transport_protocol (C enum), 209
kr_transport_protocol.KR_TRANSPORT_RESOLVE_A

(C enumerator), 209
kr_transport_protocol.KR_TRANSPORT_RESOLVE_AAAA

(C enumerator), 209
kr_transport_protocol.KR_TRANSPORT_TCP (C

enumerator), 209
kr_transport_protocol.KR_TRANSPORT_TLS (C

enumerator), 209

268 Index

Knot Resolver, Release 6.0.0a1

kr_transport_protocol.KR_TRANSPORT_UDP (C
enumerator), 209

kr_unpack_cache_key (C function), 198
kr_uv_free_cb (C function), 227
kr_zonecut (C struct), 216
kr_zonecut.key (C var), 217
kr_zonecut.name (C var), 217
kr_zonecut.nsset (C var), 217
kr_zonecut.parent (C var), 217
kr_zonecut.pool (C var), 217
kr_zonecut.trust_anchor (C var), 217
kr_zonecut_add (C function), 215
kr_zonecut_copy (C function), 214
kr_zonecut_copy_trust (C function), 215
kr_zonecut_deinit (C function), 214
kr_zonecut_del (C function), 215
kr_zonecut_del_all (C function), 215
kr_zonecut_find (C function), 215
kr_zonecut_find_cached (C function), 216
kr_zonecut_init (C function), 214
kr_zonecut_is_empty (C function), 216
kr_zonecut_move (C function), 214
kr_zonecut_set (C function), 214
kr_zonecut_set_sbelt (C function), 216
kres.parse_rdata() (in module policy), 47
kresctl command line option

--help, 113
--json, 113, 114
--live, 114
--path, 113, 114
--socket, 113
--yaml, 113, 114
-h, 113
-l, 114
-p, 113, 114
-s, 113
<file>, 114
<input_file>, 115
<output_file>, 115
config, 113
convert, 115
delete, 114
get, 113
metrics, 114
reload, 115
schema, 114
set, 114
stop, 115
validate, 115

L
local_state (C struct), 211
local_state.force_resolve (C var), 211
local_state.force_udp (C var), 211

local_state.private (C var), 211
local_state.timeouts (C var), 211
local_state.truncated (C var), 211
LOG_DEFAULT_LEVEL (C macro), 80
LOG_GNUTLS_LEVEL (C macro), 80
log_groups()

built-in function, 66
LOG_GRP_CACHE_TAG (C macro), 77
LOG_GRP_CONTROL_TAG (C macro), 79
LOG_GRP_COOKIES_TAG (C macro), 78
LOG_GRP_DAF_TAG (C macro), 78
LOG_GRP_DETECTTIMEJUMP_TAG (C macro), 78
LOG_GRP_DETECTTIMESKEW_TAG (C macro), 78
LOG_GRP_DEVEL_TAG (C macro), 79
LOG_GRP_DNSSEC_TAG (C macro), 77
LOG_GRP_DNSTAP_TAG (C macro), 79
LOG_GRP_DOH_TAG (C macro), 77
LOG_GRP_DOTAUTH_TAG (C macro), 79
LOG_GRP_EDE_TAG (C macro), 79
LOG_GRP_GNUTLS_TAG (C macro), 77
LOG_GRP_GRAPHITE_TAG (C macro), 79
LOG_GRP_HINT_TAG (C macro), 78
LOG_GRP_HTTP_TAG (C macro), 79
LOG_GRP_IO_TAG (C macro), 77
LOG_GRP_ITERATOR_TAG (C macro), 78
LOG_GRP_MODULE_TAG (C macro), 79
LOG_GRP_NETWORK_TAG (C macro), 77
LOG_GRP_NSID_TAG (C macro), 79
LOG_GRP_PLAN_TAG (C macro), 78
LOG_GRP_POLICY_TAG (C macro), 78
LOG_GRP_PREFILL_TAG (C macro), 79
LOG_GRP_PRIMING_TAG (C macro), 79
LOG_GRP_REBIND_TAG (C macro), 78
LOG_GRP_RENUMBER_TAG (C macro), 79
LOG_GRP_REQDBG_TAG (C macro), 80
LOG_GRP_RESOLVER_TAG (C macro), 78
LOG_GRP_SELECTION_TAG (C macro), 78
LOG_GRP_SRVSTALE_TAG (C macro), 79
LOG_GRP_STATISTICS_TAG (C macro), 78
LOG_GRP_SYSTEM_TAG (C macro), 77
LOG_GRP_TA_TAG (C macro), 77
LOG_GRP_TASENTINEL_TAG (C macro), 77
LOG_GRP_TASIGNALING_TAG (C macro), 77
LOG_GRP_TAUPDATE_TAG (C macro), 77
LOG_GRP_TESTS_TAG (C macro), 79
LOG_GRP_TLS_TAG (C macro), 77
LOG_GRP_TLSCLIENT_TAG (C macro), 77
LOG_GRP_VALIDATOR_TAG (C macro), 78
LOG_GRP_WATCHDOG_TAG (C macro), 79
LOG_GRP_WORKER_TAG (C macro), 78
LOG_GRP_XDP_TAG (C macro), 77
LOG_GRP_ZCUT_TAG (C macro), 78
log_level()

built-in function, 66

Index 269

Knot Resolver, Release 6.0.0a1

log_target()
built-in function, 66

LOG_UNKNOWN_LEVEL (C macro), 80
lru_apply (C macro), 238
lru_apply_do (C enum), 239
lru_apply_do.LRU_APPLY_DO_EVICT (C enumerator),

239
lru_apply_do.LRU_APPLY_DO_NOTHING (C enumera-

tor), 239
lru_capacity (C macro), 239
lru_create (C macro), 238
lru_free (C macro), 238
lru_get_new (C macro), 238
lru_get_try (C macro), 238
lru_reset (C macro), 238
lru_t (C macro), 238

M
map()

built-in function, 88
metrics

kresctl command line option, 114
MIRROR() (in module policy), 48
mode()

built-in function, 87
module

policy, 44
modules.list()

built-in function, 19
modules.load()

built-in function, 19
modules.unload()

built-in function, 19

N
net.bufsize()

built-in function, 30
net.close()

built-in function, 22
net.doh_headers()

built-in function, 26
net.interfaces()

built-in function, 23
net.list()

built-in function, 22
net.listen()

built-in function, 20
net.outgoing_v4()

built-in function, 29
net.outgoing_v6()

built-in function, 29
net.proxy_allowed()

built-in function, 21
net.tcp_pipeline()

built-in function, 23
net.tls()

built-in function, 25
net.tls_padding()

built-in function, 26
net.tls_sticket_secret()

built-in function, 25
net.tls_sticket_secret_file()

built-in function, 26
no6_is_bad (C function), 210
NO_ANSWER (in module policy), 46
nsec1_encloser (C function), 204
nsec1_src_synth (C function), 204
nsec3_encloser (C function), 204
NSEC3_HASH_LEN (C var), 205
NSEC3_HASH_TXT_LEN (C var), 205
nsec3_src_synth (C function), 204
nsec_p (C struct), 205
nsec_p.hash (C var), 206
nsec_p.libknot (C var), 206
nsec_p.raw (C var), 206
nsec_p_hash_t (C type), 200
NSEC_P_MAXLEN (C var), 205
nsec_p_mkHash (C function), 201
nsec_p_rdlen (C function), 201

P
pack_clear (C macro), 235
pack_clear_mm (C macro), 235
pack_clone (C function), 237
pack_head (C macro), 236
pack_init (C macro), 235
pack_last (C function), 236
pack_obj_del (C function), 236
pack_obj_find (C function), 236
pack_obj_len (C function), 236
pack_obj_next (C function), 236
pack_obj_push (C function), 236
pack_obj_val (C function), 236
pack_objlen_t (C type), 236
pack_reserve (C macro), 235
pack_reserve_mm (C macro), 236
pack_t (C type), 236
pack_tail (C macro), 236
package_version()

built-in function, 91
PASS (in module policy), 46
pattern() (in module policy), 44
pkt_append (C function), 203
pkt_renew (C function), 203
policy

module, 44
predict.config()

built-in function, 40

270 Index

Knot Resolver, Release 6.0.0a1

put_rtt_state (C function), 210

Q
qr_task_on_send (C function), 250
QTRACE (in module policy), 49
queue_deinit (C macro), 234
queue_head (C macro), 234
queue_init (C macro), 234
queue_it_begin (C macro), 234
queue_it_finished (C macro), 234
queue_it_next (C macro), 234
queue_it_t (C macro), 234
queue_it_val (C macro), 234
queue_len (C macro), 234
queue_pop (C macro), 234
queue_push (C macro), 234
queue_push_head (C macro), 234
queue_t (C macro), 234
queue_tail (C macro), 234

R
rdataset_dematerialize (C function), 203
rdataset_dematerialize_size (C function), 203
rdataset_dematerialized_size (C function), 203
REFUSE (in module policy), 46
reload

kresctl command line option, 115
reorder_RR()

built-in function, 62
REQTRACE (in module policy), 49
REROUTE() (in module policy), 47
resolve()

built-in function, 91
RFC

RFC 1034, 20
RFC 1035, 40, 68
RFC 3986, 34
RFC 4035, 31
RFC 5001, 73
RFC 5011, 75, 85
RFC 5077, 25
RFC 6147, 61
RFC 6761, 44
RFC 6761#section-6, 58
RFC 6891, 31
RFC 7540, 24
RFC 7540#section-9.2, 24
RFC 7646, 85
RFC 7706, 41
RFC 7828, 41
RFC 7858, 24, 51, 68
RFC 8109, 41
RFC 8145#section-5, 75
RFC 8198, 31, 41

RFC 8484, 24, 25, 28, 68
RFC 8509, 75
RFC 8906, 46
RFC 8914, 46

rpz() (in module policy), 55
rtt_state (C struct), 212
rtt_state.consecutive_timeouts (C var), 212
rtt_state.dead_since (C var), 212
rtt_state.srtt (C var), 212
rtt_state.variance (C var), 212

S
schema

kresctl command line option, 114
SD_JOURNAL_METADATA (C macro), 81
select_transport (C function), 209
set

kresctl command line option, 114
slice() (in module policy), 53
slice_randomize_psl() (in module policy), 53
stash_pkt (C function), 202
stats.clear_frequent()

built-in function, 70
stats.frequent()

built-in function, 70
stats.get()

built-in function, 70
stats.list()

built-in function, 70
stats.set()

built-in function, 70
stats.upstreams()

built-in function, 70
stop

kresctl command line option, 115
strcmp_p (C function), 223
STUB() (in module policy), 51
suffix() (in module policy), 44
suffix_common() (in module policy), 45
SWAP (C macro), 223

T
TC (in module policy), 46
the_worker (C var), 251
TLS_FORWARD() (in module policy), 51
to_even (C function), 202
to_resolve (C struct), 213
to_resolve.name (C var), 214
to_resolve.type (C var), 214
todnames() (in module policy), 56
tojson()

built-in function, 92
trace_callback_f (C type), 223
trace_log_f (C type), 223

Index 271

Knot Resolver, Release 6.0.0a1

trie_apply (C function), 240
trie_apply_with_key (C function), 240
trie_clear (C function), 240
trie_create (C function), 240
trie_del (C function), 240
trie_del_first (C function), 241
trie_free (C function), 240
trie_get_first (C function), 240
trie_get_ins (C function), 240
trie_get_leq (C function), 240
trie_get_try (C function), 240
trie_it_begin (C function), 241
trie_it_finished (C function), 241
trie_it_free (C function), 241
trie_it_key (C function), 241
trie_it_next (C function), 241
trie_it_t (C type), 239
trie_it_val (C function), 241
trie_t (C type), 239
trie_val_t (C type), 239
trie_weight (C function), 240
trust_anchors.add()

built-in function, 87
trust_anchors.add_file()

built-in function, 85
trust_anchors.remove()

built-in function, 86
trust_anchors.set_insecure()

built-in function, 86
trust_anchors.summary()

built-in function, 87
TTL_MAX_MAX (C macro), 195

U
update_address_state (C function), 210
update_rtt (C function), 210
user()

built-in function, 108

V
validate

kresctl command line option, 115
verbose()

built-in function, 66
VERBOSE_MSG (C macro), 200

W
WITH_VERBOSE (C macro), 200
worker.coroutine()

built-in function, 95
worker.id, 121
worker.pid, 72
worker.sleep()

built-in function, 96

worker.stats()
built-in function, 72

worker_add_tcp_connected (C function), 250
worker_deinit (C function), 249
worker_del_tcp_connected (C function), 250
worker_del_tcp_waiting (C function), 250
worker_end_tcp (C function), 249
worker_find_tcp_connected (C function), 250
worker_find_tcp_waiting (C function), 250
worker_init (C function), 249
worker_request_get_source_session (C function),

250
worker_resolve_exec (C function), 249
worker_resolve_mk_pkt (C function), 249
worker_resolve_mk_pkt_dname (C function), 249
worker_resolve_start (C function), 249
worker_stats (C struct), 251
worker_stats.concurrent (C var), 251
worker_stats.dropped (C var), 251
worker_stats.err_http (C var), 252
worker_stats.err_tcp (C var), 251
worker_stats.err_tls (C var), 252
worker_stats.err_udp (C var), 251
worker_stats.ipv4 (C var), 251
worker_stats.ipv6 (C var), 251
worker_stats.queries (C var), 251
worker_stats.rconcurrent (C var), 251
worker_stats.tcp (C var), 251
worker_stats.timeout (C var), 251
worker_stats.tls (C var), 251
worker_stats.udp (C var), 251
worker_submit (C function), 249
worker_task_complete (C function), 250
worker_task_creation_time (C function), 250
worker_task_finalize (C function), 250
worker_task_finished (C function), 250
worker_task_get_pktbuf (C function), 250
worker_task_get_request (C function), 250
worker_task_numrefs (C function), 250
worker_task_pkt_get_msgid (C function), 250
worker_task_pkt_set_msgid (C function), 250
worker_task_ref (C function), 250
worker_task_request (C function), 250
worker_task_step (C function), 250
worker_task_subreq_finalize (C function), 250
worker_task_timeout_inc (C function), 250
worker_task_unref (C function), 250

272 Index

	Installation
	Startup
	First DNS query

	Configuration
	Listening on network interfaces
	Example: Internal Resolver
	Internal-only domains

	Example: ISP Resolver
	Limiting client access
	TLS server configuration
	Mandatory domain blocking

	Example: Personal Resolver
	Forwarding over TLS protocol (DNS-over-TLS)
	Forwarding to multiple targets
	Non-persistent cache

	Configuration Overview
	Syntax
	Schema

	Configuration schema
	Getting the JSON schema
	Validating you configuration
	Interactive visualization
	Text-based configuration schema description

	Listening on network interfaces
	Advanced configuration (Lua)
	Syntax
	Documentation Conventions
	Modules
	Networking and protocols
	Server (communication with clients)
	Addresses and services
	PROXYv2 protocol
	Features for scripting

	DoT and DoH (encrypted DNS)
	DNS-over-TLS (DoT)
	DNS-over-HTTPS (DoH)
	HTTP status codes

	Configuration options for DoT and DoH
	Configuration options for DoH

	Other HTTP services
	Example configuration
	HTTPS (TLS for HTTP)
	Legacy DNS-over-HTTPS (DoH)
	Built-in services
	Dependencies

	Client (retrieving answers from servers)
	IPv4 and IPv6 usage
	Forwarding

	DNS protocol tweaks
	DNS protocol tweaks

	Performance and resiliency
	Cache
	Sizing
	Persistence
	Configuration reference

	Multiple instances
	Zero-downtime restarts
	Instance-specific configuration

	Prefetching records
	Expiring records
	Prediction
	Example configuration
	Exported metrics
	Properties

	Cache prefilling
	Dependencies

	Serve stale
	Running

	Root on loopback (RFC 7706)
	Priming module
	EDNS keepalive
	XDP for higher UDP performance
	Prerequisites
	Set up
	Optimizations
	Limitations

	Policy, access control, data manipulation
	Query policies
	Filters
	Actions
	Non-chain actions
	Chain actions
	Actions for extra logging
	Custom actions

	Forwarding
	Forwarding over TLS protocol (DNS-over-TLS)
	CA+hostname authentication
	Key-pinned authentication
	TLS Examples
	Forwarding to multiple targets

	Replacing part of the DNS tree
	Response policy zones
	Additional properties

	Views and ACLs
	Example configuration
	Rule order
	Properties

	Static hints
	Examples
	Properties

	DNS64
	Simple example
	Advanced options

	IP address renumbering
	Example configuration

	Answer reordering
	Rebinding protection
	Refuse queries without RD bit
	DNS Application Firewall
	Example configuration
	Web interface
	RESTful interface

	Logging, monitoring, diagnostics
	DNSSEC validation failure logging
	Statistics collector
	Built-in statistics
	Module reference
	Graphite/InfluxDB/Metronome
	Dependencies

	Prometheus metrics endpoint

	Scripting worker
	Name Server Identifier (NSID)
	Debugging a single request
	Using query policies
	Using HTTP module

	Watchdog
	Dnstap (traffic collection)
	Sentinel for Detecting Trusted Root Keys
	Signaling Trust Anchor Knowledge in DNSSEC
	System time skew detector
	Detect discontinuous jumps in the system time
	Debugging options
	Logging API

	DNSSEC, data verification
	Experimental features
	Run-time reconfiguration
	Control sockets
	Lua scripts
	Helper functions

	Asynchronous events
	Timers and events reference
	Asynchronous function execution

	Etcd support
	Example configuration
	Dependencies

	Experimental DNS-over-TLS Auto-discovery
	How it works
	Generating NS target names
	Example configuration
	Caveats
	Dependencies

	Systemd
	Manual
	Multiple instances on a single server

	Docker
	Advanced
	Usage without the manager
	Startup
	Configuration

	Usage without systemd and without manager
	Process management
	Garbage Collector

	Privileges and capabilities
	Using capabilities
	Running as non-privileged user
	Running as root

	HTTP API
	Management HTTP API
	Dynamically changing configuration
	Reloading configuration file
	HTTP API
	Listen address
	List of API endpoints
	Config modification endpoint (v1)

	kresctl utility
	Connecting to the management API
	Commands

	Upgrading to 6.0.0 from 5.x.x
	Command rosetta

	Upgrading
	Upcoming changes
	5.x to 6.0
	5.4 to 5.5
	Packagers & Developers
	Module API changes

	5.3 to 5.4
	Configuration file
	Packagers & Developers
	Module changes

	5.2 to 5.3
	Configuration file
	Packagers & Developers

	5.1 to 5.2
	Users
	Configuration file
	Module changes

	5.0 to 5.1
	Module changes

	4.x to 5.x
	Users
	Configuration file

	4.2.2 to 4.3+
	Module changes

	4.x to 4.2.1+
	Users

	3.x to 4.x
	Users
	Configuration file

	Packagers & Developers
	Module changes

	2.x to 3.x
	Users
	Packagers & Developers
	Module changes

	Release notes
	Version numbering
	Knot Resolver 6.0.0 (2023-mm-dd)
	Improvements

	Knot Resolver 5.6.0 (2023-01-26)
	Security
	Improvements
	Bugfixes

	Knot Resolver 5.5.3 (2022-09-21)
	Security
	Improvements

	Knot Resolver 5.5.2 (2022-08-16)
	Improvements
	Bugfixes

	Knot Resolver 5.5.1 (2022-06-14)
	Improvements
	Bugfixes

	Knot Resolver 5.5.0 (2022-03-15)
	Improvements
	Incompatible changes
	Bugfixes

	Knot Resolver 5.4.4 (2022-01-05)
	Bugfixes

	Knot Resolver 5.4.3 (2021-12-01)
	Improvements
	Bugfixes

	Knot Resolver 5.4.2 (2021-10-13)
	Improvements
	Bugfixes

	Knot Resolver 5.4.1 (2021-08-19)
	Improvements
	Bugfixes

	Knot Resolver 5.4.0 (2021-07-29)
	Improvements
	Bugfixes
	Incompatible changes

	Knot Resolver 5.3.2 (2021-05-05)
	Security
	Improvements
	Bugfixes

	Knot Resolver 5.3.1 (2021-03-31)
	Improvements
	Bugfixes

	Knot Resolver 5.3.0 (2021-02-25)
	Improvements
	Bugfixes
	Incompatible changes

	Knot Resolver 5.2.1 (2020-12-09)
	Improvements
	Bugfixes

	Knot Resolver 5.2.0 (2020-11-11)
	Improvements
	Bugfixes
	Incompatible changes

	Knot Resolver 5.1.3 (2020-09-08)
	Improvements
	Bugfixes

	Knot Resolver 5.1.2 (2020-07-01)
	Bugfixes

	Knot Resolver 5.1.1 (2020-05-19)
	Security
	Bugfixes

	Knot Resolver 5.1.0 (2020-04-29)
	Improvements
	Bugfixes
	Incompatible changes

	Knot Resolver 5.0.1 (2020-02-05)
	Bugfixes
	Improvements

	Knot Resolver 5.0.0 (2020-01-27)
	Incompatible changes
	Improvements
	Bugfixes

	Knot Resolver 4.3.0 (2019-12-04)
	Security - CVE-2019-19331
	Bugfixes
	Improvements

	Knot Resolver 4.2.2 (2019-10-07)
	Bugfixes

	Knot Resolver 4.2.1 (2019-09-26)
	Bugfixes
	Improvements

	Knot Resolver 4.2.0 (2019-08-05)
	Improvements
	Bugfixes
	Module API changes

	Knot Resolver 4.1.0 (2019-07-10)
	Security
	Improvements
	Bugfixes
	Module API changes

	Knot Resolver 4.0.0 (2019-04-18)
	Incompatible changes
	Improvements
	Bugfixes
	Module API changes

	Knot Resolver 3.2.1 (2019-01-10)
	Bugfixes
	Improvements

	Knot Resolver 3.2.0 (2018-12-17)
	New features
	Bugfixes
	Improvements
	Module API changes

	Knot Resolver 3.1.0 (2018-11-02)
	Incompatible changes
	Improvements
	Bugfixes

	Knot Resolver 3.0.0 (2018-08-20)
	Incompatible changes
	Bugfixes
	Improvements

	Knot Resolver 2.4.1 (2018-08-02)
	Security
	Bugfixes

	Knot Resolver 2.4.0 (2018-07-03)
	Incompatible changes
	Security
	New features
	Bugfixes
	Improvements

	Knot Resolver 2.3.0 (2018-04-23)
	Security
	New features
	Bugfixes
	Improvements

	Knot Resolver 2.2.0 (2018-03-28)
	New features
	Bugfixes

	Knot Resolver 2.1.1 (2018-02-23)
	Bugfixes

	Knot Resolver 2.1.0 (2018-02-16)
	Incompatible changes
	Bugfixes

	Knot Resolver 2.0.0 (2018-01-31)
	Incompatible changes
	New features
	Bugfixes

	Knot Resolver 1.5.3 (2018-01-23)
	Bugfixes

	Knot Resolver 1.5.2 (2018-01-22)
	Security
	Bugfixes

	Knot Resolver 1.5.1 (2017-12-12)
	Incompatible changes
	Bugfixes
	Improvements

	Knot Resolver 1.5.0 (2017-11-02)
	Bugfixes
	Improvements

	Knot Resolver 1.99.1-alpha (2017-10-26)
	Improvements
	Regressions

	Knot Resolver 1.4.0 (2017-09-22)
	Incompatible changes
	Bugfixes
	Improvements

	Knot Resolver 1.3.3 (2017-08-09)
	Security
	Bugfixes
	Improvements

	Knot Resolver 1.3.2 (2017-07-28)
	Security
	Bugfixes
	Improvements

	Knot Resolver 1.3.1 (2017-06-23)
	Bugfixes

	Knot Resolver 1.3.0 (2017-06-13)
	Security
	Improvements
	Bugfixes

	Knot Resolver 1.2.6 (2017-04-24)
	Security
	Improvements
	Bugfixes

	Knot Resolver 1.2.5 (2017-04-05)
	Security
	Improvements
	Bugfixes

	Knot Resolver 1.2.4 (2017-03-09)
	Security
	Improvements
	Bugfixes

	Knot Resolver 1.2.3 (2017-02-23)
	Bugfixes

	Knot Resolver 1.2.2 (2017-02-10)
	Bugfixes:
	Testing:

	Knot Resolver 1.2.1 (2017-02-01)
	Security:
	Documentation
	Bugfixes:

	Knot Resolver 1.2.0 (2017-01-24)
	Security:
	Improvements:
	Bugfixes:
	Miscellaneous:

	Knot Resolver 1.1.1 (2016-08-24)
	Bugfixes:
	Improvements:

	Knot Resolver 1.1.0 (2016-08-12)
	Improvements:

	Knot Resolver 1.0.0 (2016-05-30)
	Initial release:

	System architecture
	Knot Resolver startup
	Failure handling
	Individual components
	kres-manager
	API
	Config processing
	Actual manager
	Interactions with supervisord

	kresd
	kres-cache-gc

	Building from sources
	Building with apkg
	Building with Meson
	Dependencies
	Compilation
	Build options
	Customizing compiler flags

	Tests
	Unit tests
	Postinstall tests
	Config tests
	Extra tests
	Useful meson commands

	Documentation
	Tarball
	Packaging
	Systemd
	Trust anchors

	Docker image

	Knot Resolver library
	Requirements
	For users
	For developers
	Writing layers
	APIs in Lua
	Elementary types and constants
	Working with domain names
	Working with resource records
	Working with packets
	Working with requests
	Significant Lua API changes
	Incompatible changes since 3.0.0

	API reference
	Name resolution
	Cache
	Nameservers
	Modules
	Utilities
	Generics library
	array
	queue
	pack
	lru
	trie

	Modules API reference
	Supported languages
	The anatomy of an extension
	Writing a module in Lua
	Writing a module in C
	Configuring modules
	Exposing C module properties
	Special properties

	Worker API reference
	Custom HTTP services
	Custom RESTful services

	Indices and tables
	Python Module Index
	Index

